

Lecture Notes in Computer Science 5147
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Katsuhisa Horimoto Georg Regensburger
Markus Rosenkranz Hiroshi Yoshida (Eds.)

Algebraic Biology

Third International Conference, AB 2008
Castle of Hagenberg, Austria, July 31–August 2, 2008
Proceedings

13

Volume Editors

Katsuhisa Horimoto
National Institute of Advanced Industrial Science
and Technology (AIST)
Computational Biology Research Center (CBRC)
Tokyo, Japan
E-mail: k.horimoto@aist.go.jp

Georg Regensburger
Johann Radon Institute for Computational
and Applied Mathematics (RICAM)
Austrian Academy of Sciences
Linz, Austria
E-mail: georg.regensburger@oeaw.ac.at

Markus Rosenkranz
Johann Radon Institute for Computational
and Applied Mathematics (RICAM)
Austrian Academy of Sciences
Linz, Austria
E-mail: markus.rosenkranz@oeaw.ac.at

Hiroshi Yoshida
Department of Mathematics
Kyushu University, Fukuoka, Japan
E-mail: phiroshi@math.kyushu-u.ac.jp

Library of Congress Control Number: 2008931512

CR Subject Classification (1998): F.3.1, F.4, D.2.4, I.1, J.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-85100-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-85100-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12443734 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of the Third International Conference on
Algebraic Biology (AB 2008). Jointly organized by the National Institute of
Advanced Industrial Science and Technology (AIST), Tokyo, and the Research
Institute for Symbolic Computation (RISC), Hagenberg, Austria, it was held
from July 31 to August 2, 2008 in the Castle of Hagenberg.

Algebraic biology is an interdisciplinary forum for research on all aspects
of applying symbolic computation in biology. The first conference on algebraic
biology (AB 2005) was held November 28–30, 2005 in Tokyo, the second during
July 2–4, 2007 in Hagenberg. The AB conference series is intended as a bridge
between life sciences and symbolic computation: On the one hand, new insights
in biology are found by powerful symbolic methods; on the other hand, biological
problems suggest new algebraic structures and algorithms. While this profile has
been established in the previous proceedings, the papers in the present volume
demonstrate the continuous growth of algebraic biology.

We received 27 submissions from 14 countries (Australia, Austria, Canada,
China, Colombia, France, Germany, Italy, Japan, Norway, Russia, Switzerland,
UK, USA), and 14 papers were accepted for publication. Each submission was
assigned to at least three Program Committee members, who carefully reviewed
the papers, in many cases with the help of external referees. The reviews were
discussed by the Program Committee for one week via the EasyChair conference
management system.

Since the last conference, life sciences tutorials and symbolic computation
tutorials have been organized as additional platforms for stimulating exchange
between the communities. The idea of life sciences tutorials is to explain impor-
tant problems of the area and survey past/current approaches by mathematical
methods. Conversely, the goal of symbolic computation tutorials is to present
the most important and successful methods in symbolic computation to experts
in biology. This year we had three life sciences and three symbolic computation
tutorials; three tutorial speakers submitted papers.

Furthermore, a new session—short communications with posters—was in-
troduced for encouraging the presentation of interesting but “not-yet-polished”
ideas, in particular unconventional proposals carrying the potential of creating
new links between biology and symbolic computation. Despite the late announce-
ment, six communications were submitted from five countries (Austria, France,
Japan, Ukraine, USA), and five communications were accepted through a peer-
viewing procedure by Program Committee members. The extended abstracts
were distributed in a special booklet at the conference.

We are pleased to continue our collaboration with Springer, who agreed to
publish the proceedings of AB 2007 and AB 2008 in the Lecture Notes in Com-
puter Science series.

VI Preface

The AB Steering Committee and the organizers of the conference are grateful
to the following sponsors: Austrian Grid, National Institute of Advanced Indus-
trial Science and Technology, Radon Institute for Computational and Applied
Mathematics (RICAM), RISC Software GmbH, Special Research Program SFB
F013 of the Austrian Science Fund (FWF), and the Upper Austrian Government.

Our thanks are also due to all the members of the Program Committee, to
the invited and tutorial speakers, to the external reviewers, and to all those who
contributed to a successful and enjoyable conference.

August 2008 Bruno Buchberger
Katsuhisa Horimoto

Reinhard Laubenbacher
Bud Mishra

Georg Regensburger
Markus Rosenkranz

Hiroshi Yoshida

Conference Organization

Conference Chairs

Bruno Buchberger Johannes Kepler University of Linz, Austria
Katsuhisa Horimoto National Institute of Advanced Industrial Science

and Technology, Japan
Reinhard Laubenbacher Virginia Bioinformatics Institute, USA
Bud Mishra New York University, USA

Program Chairs

Katsuhisa Horimoto National Institute of Advanced Industrial Science
and Technology, Japan

Georg Regensburger Johann Radon Institute for Computational and
Applied Mathematics, Austria

Markus Rosenkranz Johann Radon Institute for Computational and
Applied Mathematics, Austria

Hiroshi Yoshida Kyushu University, Japan

Program Committee

Sachiyo Aburatani National Institute of Advanced Industrial Science
and Technology, Japan

Tatsuya Akutsu Kyoto University, Japan
Hirokazu Anai Fujitsu Laboratories Ltd., Japan
Niko Beerenwinkel ETH Zurich, Switzerland
Armin Biere Johannes Kepler University of Linz, Austria
Bruno Buchberger Johannes Kepler University of Linz, Austria
Luca Cardelli Microsoft Research, Cambridge, UK
Gautam Dasgupta Columbia University, USA
François Fages INRIA Rocquencourt, France
Hoon Hong North Carolina State University, USA
Katsuhisa Horimoto National Institute of Advanced Industrial Science

and Technology, Japan
Abdul Jarrah Virginia Bioinformatics Institute, USA
Erich Kaltofen North Carolina State University, USA
Veikko Keränen Rovaniemi University of Applied Sciences, Finland
Hans A. Kestler University of Ulm, Germany
Reinhard Laubenbacher Virginia Bioinformatics Institute, USA
Pierre Lescanne Ecole Normale Supérieure of Lyon, France

VIII Organization

James F. Lynch Clarkson University, USA
Manfred Minimair Seton Hall University, USA
Bud Mishra New York University, USA
Eugenio Omodeo University of Trieste, Italy
Georg Regensburger Johann Radon Institute for Computational and

Applied Mathematics, Austria
Markus Rosenkranz Johann Radon Institute for Computational and

Applied Mathematics, Austria
Stanly Steinberg University of New Mexico, USA
Seth Sullivant Harvard University, USA
Carolyn L. Talcott SRI International, USA
Francis Thackeray Transvaal Museum, Northern Flagship Institution,

South Africa
Ashish Tiwari SRI International, USA
Hiroyuki Toh Kyushu University, Japan
Dongming Wang Beihang University, China and UPMC-CNRS, France
Bridget S. Wilson University of New Mexico, USA
Limsoon Wong National University of Singapore
Kazuhiro Yokoyama Rikkyo University, Japan
Hiroshi Yoshida Kyushu University, Japan
Ruriko Yoshida University of Kentucky, USA

Invited Speakers

Kiyoshi Asai National Institute of Advanced Industrial Science
and Technology, Japan

Charles Cantor Sequenom, Inc., USA

Tutorial Speakers

Tatsuya Akutsu Kyoto University, Japan
Armin Biere Johannes Kepler University of Linz, Austria
François Boulier University Lille I, France
Ken Fukuda National Institute of Advanced Industrial Science

and Technology, Japan
Tohru Natsume Biomedicinal Information Research Center, Japan
Ashish Tiwari SRI International, USA

Local Organization

Betina Curtis Johannes Kepler University of Linz, Austria
Georg Regensburger Johann Radon Institute for Computational and

Applied Mathematics, Austria
Markus Rosenkranz Johann Radon Institute for Computational and

Applied Mathematics, Austria

Organization IX

External Reviewers

Grégory Batt
Luca Bortolussi
Christopher Brown
Franck Delaplace
Francesco Fabris
Cédric Lhoussaine
Henning Mortveit
Masahiko Nakatsui
Wei Niu

Masayuki Noro
Andrea Sgarro
Yasuhiro Suzuki
Alan Veliz-Cuba
Andreas Weber
Osvaldo Zagordi
Jun Zhang

Sponsors

Austrian Grid
National Institute of Advanced Industrial Science and Technology (AIST)
Johann Radon Institute for Computational and Applied Mathematics (RICAM)
RISC Software GmbH
Special Research Program SFB F013 of the Austrian Science Fund (FWF)
Upper Austrian Government

Table of Contents

Algorithms for Inference, Analysis and Control of Boolean Networks
(Tutorial Talk) . 1

Tatsuya Akutsu, Morihiro Hayashida, and Takeyuki Tamura

Tutorial on Model Checking: Modelling and Verification in Computer
Science (Tutorial Talk) . 16

Armin Biere

Differential Algebra and System Modeling in Cellular Biology
(Tutorial Talk) . 22

François Boulier and François Lemaire

Hybrid Semantics for Stochastic π-Calculus . 40
Luca Bortolussi and Alberto Policriti

Applying a Rigorous Quasi-Steady State Approximation Method for
Proving the Absence of Oscillations in Models of Genetic Circuits 56

François Boulier, Marc Lefranc, François Lemaire, and
Pierre-Emmanuel Morant

On the Computational Power of Biochemistry . 65
Luca Cardelli and Gianluigi Zavattaro

The Geometry of the Neighbor-Joining Algorithm for Small Trees 81
Kord Eickmeyer and Ruriko Yoshida

Neural Algebra and Consciousness: A Theory of Structural
Functionality in Neural Nets . 96

Erwin Engeler

An Algorithm for Qualitative Simulation of Gene Regulatory Networks
with Steep Sigmoidal Response Functions . 110

Liliana Ironi, Luigi Panzeri, and Erik Plahte

Property Preservation along Embedding of Biological Regulatory
Networks . 125

Mbarka Mabrouki, Marc Aiguier, Jean-Paul Comet, and
Pascale Le Gall

Process Algebra Models of Population Dynamics . 139
Chris McCaig, Rachel Norman, and Carron Shankland

Algebraic Analysis of Bifurcation and Limit Cycles for Biological
Systems . 156

Wei Niu and Dongming Wang

XII Table of Contents

The Smallest Multistationary Mass-Preserving Chemical Reaction
Network . 172

Anne Shiu

Local Structure and Behavior of Boolean Bioregulatory Networks 185
Heike Siebert

Investigating Generic Methods to Solve Hopf Bifurcation Problems in
Algebraic Biology . 200

Thomas Sturm and Andreas Weber

An Improved Algorithm for Detecting a Singleton Attractor in a
Boolean Network Consisting of AND/OR Nodes . 216

Takeyuki Tamura and Tatsuya Akutsu

Constructing a Knowledge Base for Gene Regulatory Dynamics by
Formal Concept Analysis Methods . 230

Johannes Wollbold, Reinhard Guthke, and Bernhard Ganter

Author Index . 245

Algorithms for Inference, Analysis and Control

of Boolean Networks

Tatsuya Akutsu, Morihiro Hayashida, and Takeyuki Tamura

Bioinformatics Center, Institute for Chemical Research, Kyoto University,
Gokasho, Uji, Kyoto 611-0011, Japan

{takutsu,morihiro,tamura}@kuicr.kyoto-u.ac.jp

Abstract. Boolean networks (BNs) are known as a mathematical model
of genetic networks. In this paper, we overview algorithmic aspects of
inference, analysis and control of BNs while focusing on the authors’
works. For inference of BN, we review results on the sample complexity
required to uniquely identify a BN. For analysis of BN, we review efficient
algorithms for identifying singleton attractors. For control of BN, we
review NP-hardness results and dynamic programming algorithms for
general and special cases.

1 Introduction

Mathematical analysis of biological networks is an important topic in bioinfor-
matics, systems biology, and algebraic biology. For that purpose, various kinds
of mathematical models have been proposed. Among them, the Boolean network
(BN, in short) model has received much attention [16] as a model of genetic
networks. BN is a very simple model: each node (e.g., gene) takes either 0 (in-
active) or 1 (active) and the states of nodes change synchronously according to
regulation rules given as Boolean functions. Though various aspects of BNs have
been studied, this paper focuses on the following three problems.

Inference of BN: Given a part of the state transition table (which corresponds
to time series data of gene expression), infer a BN that is consistent with
given data.

Identification of Attractors: Given a BN, identify all attractors where at-
tractors correspond to steady-states.

Control of BN: Given a BN with control nodes, its initial and target states,
find a sequence of 0-1 vectors for control nodes which leads BN from the
initial state to the target state.

These problems are considered to be fundamental and are interesting from
an algorithmic viewpoint. The purpose of this review paper is not to give a
comprehensive survey, but to explain the key ideas and proofs in algorithmic
and mathematical results mainly obtained by the authors.

K. Horimoto et al. (Eds.): AB 2008, LNCS 5147, pp. 1–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 T. Akutsu, M. Hayashida, and T. Tamura

2 Boolean Network

In this section, we briefly review BN [16].
A BN is represented by a set of nodes and a set of regulation rules for nodes,

where each node corresponds to a gene if BN is regarded as a model of a genetic
network. Each node takes either 0 or 1 at each discrete time t, where 1 (resp. 0)
means that the corresponding gene is expressed (resp. not expressed) at time t.
A regulation rule for each node is given in the form of a Boolean function and
the states of nodes change synchronously. An example is given in Fig. 1. In this
example, the state of node v1 at time t + 1 is determined by the logical AND
of the states of nodes v2 and v3 at time t. The states of node v2 and v3 at time
t + 1 are determined by the state of node v1 and the logical NOT of the state
of node v2 at time t, respectively. We use x∧ y, x∨ y, x⊕ y, x to denote logical
AND of x and y, logical OR of x and y, exclusive OR of x and y, and logical
NOT of x, respectively. Dynamics of a BN is well-described by a state transition
table and a state transition diagram shown in Fig. 1. For example, the third row
of the table means that if the state of BN is [0, 1, 0] at time t then the state will
be [0, 0, 0] at time t+ 1, and the arc from 111 to 110 in the diagram means that
if the state of BN is [1, 1, 1] at time t the state will be [1, 1, 0] at time t+ 1.

Now we will give a formal definition of BN. A Boolean network G(V, F) con-
sists of a set V = {v1, . . . , vn} of nodes and a list F = (f1, . . . , fn) of Boolean
functions, where a Boolean function fi(vi1 , . . . , vik

) with inputs from specified
nodes vi1 , . . . , vik

is assigned to each node vi. We use IN(vi) to denote the set
of input nodes vi1 , . . . , vik

to vi. Each node takes either 0 or 1 at each discrete

v 1

v2(t+1) = v1(t)

v1 v2 v3

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

time t
v1 v2 v3

0 0 1
0 0 1
0 0 0
1 0 0
0 1 1
0 1 1
0 1 0
1 1 0

time t+1

v 2

v 3

v3(t+1) = v2(t)

v1(t+1) = v2(t) v3(t)

(A) (B)

(C)
0 0 10 0 0

0 1 11 0 1 1 0 0

0 1 01 1 1 1 1 0

Fig. 1. Example of a Boolean network. Dynamics of BN (A) is well-described by a
state transition table (B) and by a state transition diagram (C).

Algorithms for Inference, Analysis and Control of Boolean Networks 3

time t, and the state of node vi at time t is denoted by vi(t). Then, the state of
node vi at time t+ 1 is determined by

vi(t+ 1) = fi(vi1 (t), . . . , viki
(t)).

Here we let v(t) = [v1(t), . . . , vn(t)], which is called a Gene Activity Profile
(GAP) at time t. We also write vi(t+1) = fi(v(t)) to denote the regulation rule
for vi and v(t + 1) = f(v(t)) to denote the regulation rule for the whole BN.
We define the set of edges E by E = {(vij , vi)|vij ∈ IN(vi)}. Then, G(V,E)
is a directed graph representing the network topology of a BN. It is worthy to
mention that an edge from vij to vi means that vij directly affects expression
of vi. The number of input nodes to vi is called the indegree of vi. We use K to
denote the maximum indegree of a BN, which plays an important role in both
inference and analysis of BNs.

Though BNs are deterministic, many real biological systems contain stochastic
subsystems. Thus, several probabilistic extensions of BN have been proposed,
which include Noisy Boolean Networks [3] and Probabilistic Boolean Networks
(PBNs) [28]. Since this paper focuses on BNs, readers interested in these models
are referred to [3,8,25,26,28].

3 Inference of Boolean Networks

Due to the development of DNA microarray technology, it has been made pos-
sible to observe time series data Vof expression of several thousands of genes,
and thus extensive studies have been done for inferring genetic networks using
these time series data. In order to infer genetic networks, mathematical models
of genetic networks are usually required. In 1998, Liang et al. developed the
REVEAL algorithm for inference of BNs from gene expression data [20]. Inde-
pendently, Akutsu et al. studied in 1998 algorithmic strategies for identification
of Boolean-like networks using gene disruption and gene overexpression [4]. By
combining these two, Akutsu et al. derived a fundamental result on the number
of samples (gene expression profiles) that are required to uniquely identify a BN
[1]. In this section, we review this result of the sample complexity along with
some algorithmic issues.

3.1 Problem Definition and Simple Inference Algorithm

Let (Ij , Oj) (j = 1, . . . ,m) be a pair of expression profiles (i.e., 0-1 vectors) of
v1, . . . , vn, where Ij corresponds to a GAP at time t and Oj corresponds to a
GAP at time t + 1. Ij

i (resp. Oj
i) denotes the expression (0 or 1) of gene vi in

Ij (resp. Oj). Each pair (Ij , Oj) is called a sample. We say that a node vi in a
BN G(V, F) is consistent with a sample (Ij , Oj) if Oj

i = fi(I
j
i1
, . . . , Ij

ik
) holds.

We say that G(V, F) is consistent with (Ij , Oj) if all nodes are consistent with
(Ij , Oj). For a set of samples EX = {(I1, O1), (I2, O2), . . . , (Im, Om)}, we say
that G(V, F) (resp. node vi) is consistent with EX if G(V, F) (resp. node vi) is
consistent with all (Ij , Oj) for 1 ≤ j ≤ m. Then, the inference problem and the
identification problem are defined as follows [1].

4 T. Akutsu, M. Hayashida, and T. Tamura

Samples

v1(t) v (t)2 v (t)3 v (t+1)1 v (t+1)2 v (t+1)3

1 0 0

0 1 0

0 1 1

0 0 1

0 1 1

1 0 0

v3(t)=v1(t+1)

=v (t+1)3 v (t)3

= v2(t) v (t)3v (t+1)2

BN1

v3(t)=v1(t+1)

= v2(t)v (t+1)2 v (t)3

= v1(t) v (t)3v (t+1)3

BN2

I 1

I 2

I 3

O 1

O 2

O 3

Fig. 2. Inference of BN. In this example, BNs consistent with given samples are not
determined uniquely because both BN1 and BN2 are consistent with samples.

Definition 1 [Inference of BN]
Instance: The number of nodes n and a set of samples EX = {(Ij, Oj) | j =
1, . . . ,m},
Problem: Decide whether or not there exists a BN of n nodes consistent with
EX and output one if it exists.

Definition 2 [Identification of BN]
Instance: The number of nodes n and a set of samples EX = {(Ij, Oj) | j =
1, . . . ,m},
Problem: Decide whether or not there exists a unique BN of n nodes consistent
with EX and output it if it exists.

It is to be noted that both problems are very similar: the difference lies only in a
point that the uniqueness of the solution should be verified in the identification
problem.

3.2 Upper and Lower Bounds on Sample Complexity

To study the sample complexity, we consider the following quite simple algorithm
for inference of BNs: for each node vi, we generate all possible Boolean functions
fi and output a function that satisfies Oj

i = fi(I
j
i1
, . . . , Ij

ik
) for all j = 1, . . . ,m.

If there is no restriction, it is well known that the number of possible Boolean
functions for each vi is 22n

. If the maximum indegree is bounded by K, the
number of possible Boolean functions (along with possible sets of input nodes)

is at most
(
n
K

)
22K

, which is a polynomial of n if K can be regarded as a

constant.
Now we analyze the sample complexity: the number of samples that are re-

quired to uniquely identify a BN. It is known that BNs correspond to state-
transition tables in the one-to-one manner. This means that all rows of a
state-transition table are required in order to uniquely specify a BN.

Proposition 1. [1] 2n samples are required to uniquely identify a BN if there
is no restriction on a BN.

This proposition suggests that an exponential number of gene expression pro-
files are required, which is non-realistic. However, if the maximum indegree is

Algorithms for Inference, Analysis and Control of Boolean Networks 5

Table 1. Explanation of Proposition 3. For K = 1, EX1 satisfies the condition of the
proposition, whereas EX2 does not satisfy since [v2 = 0, v3 = 0] does not appear.

EX1 EX2

v1 v2 v3 v4 v1 v2 v3 v4

I1 0 1 1 1 1 1 0 0
I2 1 0 1 1 0 0 1 1
I3 1 1 0 1 1 0 1 0
I4 1 1 1 0 0 1 0 1
I5 0 0 0 0 1 1 1 1

bounded, the situation drastically changes. First, we show a lower bound on the
sample complexity.

Proposition 2. [1] Ω(2K +K logn) samples are necessary in the worst case to
identify a BN of maximum indegree K.

Proof. We consider the number of mutually distinct Boolean networks. Since
there are Ω(nK) possible combinations of input nodes and 22K

possible Boolean
functions per node, there are Ω((22K · nK)n) BNs whose maximum indegree is
K.1 Therefore, Ω(2Kn + nK logn) bits are required to represent a BN. On
the other hand, each sample gives information quantity of n bits. Therefore,
Ω(2K +K logn) samples are required in the worst case. ��

Next, we show an upper bound of the sample complexity. For that purpose, we
need the following proposition (see also Table 1).

Proposition 3. [4] If all assignments (i.e., 22K assignments) of Boolean values
to all subsets of V with 2K nodes (i.e.,

(
n

2K

)
subsets) appear in Ijs, the Boolean

function together with input nodes for each node is determined uniquely, if it
exists.

Theorem 1. [1] If O(22K ·(2K+α)·log n) samples (i.e., Ijs) are given uniformly
randomly, the following holds with probability at least 1− 1

nα : there exists at most
one BN of n nodes with maximum indegree ≤ K which is consistent with given
samples.

Proof. We derive the number of Ijs satisfying the condition of Proposition 3.
For that purpose, we consider the probability that the condition is not satisfied
when m random Ijs are given.

For any fixed set of nodes {vi1 , . . . , vi2K }, the probability that a sub-assign-

ment vi1 = vi2 = · · · = vi2K = 1 does not appear in one random Ij is 1− 1
22K

.
Thus, the probability that vi1 = · · · = vi2K = 1 does not appear in any of

1 The same Boolean functions may be counted multiple times. But, it does not cause
a problem since we use Ω notation.

6 T. Akutsu, M. Hayashida, and T. Tamura

m random Ijs is (1− 1
22K

)m. Since the number of combinations of 2K nodes

is less than n2K , the probability that there exists a combination of 2K nodes
for which an assignment vi1 = · · · = vi2K = 1 does not appear in any of m

random Ijs is at most n2K · (1− 1
22K

)m. Since there are 22K possible assign-
ments to 2K variables, the probability that the condition of Proposition 3 is

not satisfied is at most 22K · n2K · (1− 1
22K

)m. It is not difficult to see that

22K · n2K · (1 − 1
22K

)m < p holds for m > ln 2 · 22K · (2K + 2K logn + log
1
p
).

Letting p = 1
nα , we obtain the theorem. ��

3.3 Computational Complexity Issue

The simple algorithm shown in Section 3.2 works in O(mnK+1) time for constant
K. Though it is polynomial, the degree of the polynomial becomes very high
as K increases. Several efforts have been done to reduce the worst case time
complexity and the practical computation time. However, it still takes long time
for large K. Indeed, both the inference and identification problems are shown to
be NP-hard if there is no restriction on K [2].

Though it is quite difficult to reduce the worst case time complexity, some
greedy type approximation algorithms have been proposed. It is proven under the
uniform distribution of samples that greedy type algorithms can identify BNs
with high probability for wide-class of Boolean functions [6,12]. Furthermore,
some sophisticated algorithms are proposed which work for all types of Boolean
functions under the uniform distribution [23].

4 Identification of Attractors

One of extensively studied topics for BNs is analysis of the number and length of
attractors in randomly generated BNs with average indegree K, where attractors
correspond to steady-states. Starting from [16], a fast increase of number of
attractors has been seen [7,10,27]. Although there is no conclusive result on the
mean length of attractors, many researches have also been done [10,16]. Recently,
several methods have been developed for efficient identification of attractors
[9,13,15,30], whereas it is known that finding a singleton attractor (i.e., a fixed
point) is NP-hard [21,30]. Devloo et al. developed a method using transformation
to a constraint satisfaction problem [9]. Garg et al. developed a method based on
Binary Decision Diagrams (BDDs) [13]. Irons developed a method that makes use
of small subnetworks [15]. However, theoretical analysis of the average case time
complexity was not performed in these works. We recently developed algorithms
for identifying singleton attractors and small attractors and analyzed the average
case time complexities of these algorithms [30]. In this section, we overview our
algorithms and their analyses.

Algorithms for Inference, Analysis and Control of Boolean Networks 7

4.1 Attractors in Boolean Networks

As mentioned in Section 2, v(t + 1) is determined from v(t) in a BN. Starting
from an initial GAP v(0), a BN will eventually reach a set of global states,
called an attractor (a directed cycle in the state transition diagram). An at-
tractor consisting of only one global state (i.e., v = f(v)) is called a singleton
attractor, which corresponds to a fixed point. Otherwise, it is called a cyclic
attractor with period p if it consists of p global states (i.e., v1 = f(vp) =
f(f(vp−1)) = · · · = f(f(· · · f(v1) · · ·))). The set of all GAPs that eventually
evolve into the same attractor is called the basin of attraction. Different basins
of attraction correspond to different connected components in the state transi-
tion diagram, and each connected component contains exactly one directed cycle.
For example, in Fig. 1, 001 is a singleton attractor, {011, 100} is a cyclic attrac-
tor with period 2, and {111, 110, 010, 000, 001} are the basin of the singleton
attractor 001.

In this paper, the attractor identification problem is defined as a problem of
enumerating all attractors for a given BN. However, it is very difficult to find
attractors with long periods. Thus, we focus on identification of singleton attrac-
tors and identification of attractors with period at most some given threshold
pmax. These problems are defined as below, where the singleton attractor iden-
tification problem corresponds to the case of pmax = 1.

Definition 3 [Identification of Attractors in BN]
Instance: A BN and the maximum length of period pmax,
Problem: Enumerate all attractors with period at most pmax.

4.2 Simple Recursive Algorithm and Its Average Case Analysis

We developed several algorithms for identifying singleton attractors and cyclic
attractors with short periods [30]. For that purpose, we proposed a very simple
algorithm, which is referred to as the basic recursive algorithm in this paper.

The number of singleton attractors in a BN depends on the regulatory rules
of the network. If the rules are given as vi(t + 1) = vi(t) for all i, the number
of singleton attractors is 2n. Thus, it would take O(2n) time in the worst case if
all the singleton attractors are to be identified. On the other hand, it is known
that the average number of singleton attractors is 1 regardless of the number of
genes n and the maximum indegree K [22]. The basic recursive algorithm was
designed based on these facts. It examines much smaller number of states than
2n in the average case.

In the algorithm, a partial GAP (i.e., profile with m (< n) genes) is extended
one by one towards a complete GAP (i.e., singleton attractor), according to a
given gene ordering (i.e., a random gene ordering). If it is found that a partial
GAP cannot be extended to a singleton attractor, the next partial GAP is ex-
amined. The pseudocode of this algorithm is given below, where this procedure
is invoked with m = 1.

8 T. Akutsu, M. Hayashida, and T. Tamura

Procedure IdentSingletonAttractor(v,m)
if m = n+ 1
then Output v1(t), v2(t), · · · , vn(t), return;
for b = 0 to 1 do
vm(t) := b;
if it is found that fj(v(t)) �= vj(t) for some j ≤ m
then continue
else IdentSingletonAttractor(v,m+ 1);

return;

This algorithm extends a partial GAP by one gene at a time in a recursive
manner. At the m-th recursive step, the states of the first m − 1 genes (i.e., a
partial GAP) are already determined. Then, the algorithm extends the partial
GAP by letting vm(t) = 0. If vj(t + 1) = vj(t) holds or the value of vj(t + 1)
is not determined for each j = 1, . . . ,m, the algorithm proceeds to the next
recursive step. That is, if there is a possibility that the current partial GAP can
be extended to a singleton attractor, it goes to the next recursive step. Otherwise,
it extends the partial GAP by letting vm(t) = 1 and executes a similar procedure.
After examining vm(t) = 0 and vm(t) = 1, the algorithm returns to the previous
recursive step. Since the number of singleton attractors is small in most cases, it
is expected that the algorithm does not examine many partial GAPs with large
m. The average case time complexity is estimated as follows [30].

Assume that we have tested the first m out of n genes, where m ≥ K. For all
i ≤ m, vi(t) �= vi(t+ 1) holds with probability

P (vi(t) �= vi(t+ 1)) = 0.5 ·

(
m
ki

)
(
n
ki

) ≈ 0.5 · (m
n

)ki ≥ 0.5 · (m
n

)K ,

where we assume that Boolean functions of ki inputs are selected at uniformly
random. If vi(t) �= vi(t + 1) holds for some i ≤ m, the algorithm cannot go to
the next recursive level. Therefore, the probability that the algorithm examines
the (m+ 1)-th gene is no more than

[1− P (vi(t) �= vi(t+ 1))]m = [1− 0.5 · (m
n

)K]m.

Thus, the number of recursive calls executed for the first m genes is at most

f(m) = 2m · [1− 0.5 · (m
n

)K]m.

Let s = m
n , and F (s) = [2s · (1 − 0.5 · sK)s]n = [(2 − sK)s]n. The average case

time complexity is estimated by computing the maximum value of F (s). Though
an additional O(nm) factor is required, it can be ignored since O(n2an) �
O((a+ ε)n) holds for any a > 1 and ε > 0.

Since we want to analyze the time complexity as a function of n, we only need
to compute the maximum value of the function g(s) = (2− sK)s, which can be

Algorithms for Inference, Analysis and Control of Boolean Networks 9

Table 2. Theoretically estimated average case time complexities of basic, outdegree-
based, and BFS-based algorithms for the singleton attractor detection problem [30]

K 2 3 4 5

basic 1.35n 1.43n 1.49n 1.53n

outdegree-based 1.19n 1.27n 1.34n 1.41n

BFS-based 1.16n 1.27n 1.35n 1.41n

obtained by a simple numerical calculations for fixed K. Then, the average case
time complexity of the algorithm can be estimated as O((max(g))n). The average
case time complexities for K = 2, . . . , 5 are listed in the first row of Table 2. It
should be noted that the naive exhaustive search-based algorithm takes at least
O(2n) time. Thus, the basic recursive algorithm is much faster than the naive
algorithm for small K.

We obtained variants of this basic recursive algorithm by sorting nodes before
invoking the recursive procedure [30]. In particular, we used the orderings of
nodes according to the outdegree and BFS (breadth-first search). For these al-
gorithms, we obtained theoretical estimates of the average case time complexity
(see Table 2). We also performed computational experiments to confirm these
theoretical results (it is to be noted that some approximations were included
in theoretical analyses). As a result, good agreement was observed. We also ex-
tended the basic recursive algorithm for identifying cyclic attractors with short
period [30]. Though the extended algorithm is not efficient compared with those
in Table 2, it still works in o(2n) time in the average case.

4.3 Issues on the Worst Case Time Complexity

We have considered the average case time complexity in the above. However,
it is also very important to consider the worst case time complexity. We have
shown that the singleton attractor detection problem (i.e., decide whether or not
there exists a singleton attractor) can be solved in o(2n) time for constant K by
a reduction to the satisfiability problem for CNF (conjunctive normal form). We
have also shown that the singleton attractor detection problem can be solved
in o(2n) time for general K if Boolean functions are restricted to AND/OR of
literals [29]. However, no o(2n) time algorithm is known for more general cases
of the singleton attractor detection problem and thus development of such an
algorithm is left as an open problem.

5 Control of Boolean Networks

One of the major goals of systems biology is to develop a control theory for bio-
logical systems [17,18]. Development of such a control theory is important both
from a theoretical viewpoint and from a practical viewpoint. From a theoretical
viewpoint, biological systems are complex and contain highly non-linear subsys-
tems and thus existing methods in control theory cannot be directly applied to

10 T. Akutsu, M. Hayashida, and T. Tamura

control of biological systems. Therefore, it is quite interesting to develop the-
ory and methods for control of biological systems. From a practical viewpoint,
control of cells may be useful for systems-based drug discovery and cancer treat-
ment [17,18]. Since BNs are highly non-linear systems, it is reasonable to try to
develop methods for control of BNs.

Datta et al. proposed a method for finding a control strategy for PBN [8],
from which many extensions followed [11,25,26]. In their approach, it is assumed
that states of some nodes can be externally controlled and the objective is to find
a sequence of control actions with the minimum cost that leads to a desirable
state of a network. Their approach is based on the theory of Markov chains
and makes use of the classical technique of dynamic programming. Since BNs
are special cases of PBNs, their methods can also be applied to control of BNs.
However, it is required in their methods to handle exponential size matrices and
thus their methods can only be applied to small biological systems. Therefore,
it is reasonable to ask how difficult it is to find control strategies for BNs. We
showed that finding control strategies for BNs is NP-hard [5], which means that
there is no polynomial time algorithm unless P=NP [14]. On the other hand,
we showed that this problem can be solved in polynomial time if BN has a tree
structure. In this section, we review these results along with the essential idea
of [8].

5.1 Definition of the Control Problem

Here we give a formal definition of the problem of finding control strategies for
BNs (Control of BN) [5].

In Control of BN, it is assumed that there exist two types of nodes: internal
nodes and external nodes, where internal nodes correspond to usual nodes (i.e.,
genes) in BN and external nodes correspond to control nodes. Let a set V of n+m
nodes be V = {v1, . . . , vn, vn+1, . . . , vn+m}, where v1, . . . , vn are internal nodes
and vn+1, . . . , vn+m are external nodes. For convenience, we use xi to denote an
external node vn+i. Then, states of internal nodes (vi(t+1) for i = 1, . . . , n) are
determined by

vi(t+ 1) = fi(vi1 (t), . . . , viki
(t)),

where each vik
is either an internal node or an external node. Here, we let v(t) =

[v1(t), . . . , vn(t)] and x(t) = [x1(t), . . . , xm(t)]. We can describe the dynamics of
a BN by v(t + 1) = f(v(t),x(t)), where x(t)s are determined externally. Then,
Control of BN is defined as follows (see also Fig. 3) [5].

Definition 4 (Control of BN)
Instance: A BN, an initial state of the network for internal nodes v0, and the
desired state of the network vM at the M -th time step,
Problem: Find a sequence of 0-1 vectors 〈x(0), . . . ,x(M)〉 such that v(0) =
v0 and v(M) = vM . If there does not exist such a sequence, “None” should be
the output.

Algorithms for Inference, Analysis and Control of Boolean Networks 11

initial (t=0)

desired (t=3)

0 0 0

0 1 1

v1 v2 v3

0

x1 x2

0 0 0 0 1
1 0 0 0 1
1 1 1 1 1
0 1 1 0 0

t

1
2
3v 3

v 2v 1

x 1 x 2

AND

OR

NOT

Fig. 3. Example of Control of BN. In this problem, given initial and desired states of
internal nodes (v1, v2, v3), it is required to compute a sequence of states of external
nodes (x1, x2) leading to the desired state.

5.2 Dynamic Programming Algorithms for Control of BNs

As mentioned before, Datta et al. proposed a dynamic programming based
method for finding a control strategy for PBN [8], which can also be applied
to BN. Here, we briefly review their method in the context of BN.

We use a table D[b1, . . . , bn, t], where each entry takes either 0 or 1. D[b1, . . . ,
bn, t] takes 1 if there exists a control sequence 〈x(t), . . . ,x(M)〉 which leads to
the target state vm beginning from the state [b1, . . . , bn] at time t. This table is
computed from t = M to t = 0 by using the following procedure:

D[b1, . . . , bn,M] =
{

1, if [b1, . . . , bn] = vM ,
0, otherwise,

D[b1, . . . , bn, t− 1] =

⎧⎨⎩1, if there exists (c,x) such that D[c1, . . . , cn, t] = 1
and c = f(b,x),

0, otherwise,

where b = [b1, . . . , bn] and c = [c1, . . . , cn]. Then, there exists a desired control
sequence if and only if D[a1, . . . , an, 0] = 1 holds for v0 = [a1, . . . , an]. Once
the table is constructed, a desired control sequence can be obtained using the
traceback technique, which is a standard technique in dynamic programming.

In this method, the size of table D[b1, . . . , bn, t] is clearly O(M ·2n). Moreover,
we should examine pairs of O(2n) internal states and O(2m) external states for
each time t. Thus, it requires O(M ·2n+m) time excluding the time for calculation
of Boolean functions. Therefore, the dynamic programming algorithm in [8] is
an exponential time algorithm.

As shown in the next subsection, control of BN is NP-hard, which suggests
that exponential time is inevitable in a general case. However, we may be able
to develop polynomial time algorithms for special cases. We developed such an
algorithm for the case where the network has a tree structure (i.e., the graph

12 T. Akutsu, M. Hayashida, and T. Tamura

is connected and there is no cycle). Since the algorithm is a bit complicated,
we show here a simple algorithm for the case where the network has a rooted
tree structure (i.e., all paths are directed from leaves to the root). In order to
compute a control strategy, we employ dynamic programming. Though dynamic
programming is also employed in the above, it is used here in a significantly
different way.

In order to apply dynamic programming, we define a table S[vi, t, b] as below,
where vi is a node in a BN, t is a time step and b is a Boolean value (i.e., 0 or
1). Here S[vi, t, b] takes 1 if there exists a control sequence (up to time t) that
makes vi(t) = b.

S[vi, t, 1] =
{

1, if there exists 〈x(0), . . . ,x(t)〉 such that vi(t) = 1,
0, otherwise.

S[vi, t, 0] =
{

1, if there exists 〈x(0), . . . ,x(t)〉 such that vi(t) = 0,
0, otherwise.

Then, S[vi, t, 1] can be computed by the following dynamic programming proce-
dure.

S[vi, t+ 1, 1] =

⎧⎨⎩
1, if there exists [bi1 , . . . , bik

] such that fi(bi1 , . . . , bik
) = 1

holds and S[vij , t, bij] = 1 holds for all j = 1, . . . , k,
0, otherwise.

S[vi, t, 0] can be computed in a similar way. It should be noted that each leaf
is either a constant node or an external node. For a constant node, either
S[vi, t, 1] = 1 and S[vi, t, 0] = 0 hold for all t, or S[vi, t, 1] = 0 and S[vi, t, 0] = 1
hold for all t. For an external node, S[vi, t, 1] = 1 and S[vi, t, 0] = 1 hold for
all t. Since the size of table S[vi, t, b] is O((n +m)M), the above dynamic pro-
gramming algorithm works in polynomial time where we assume that the value
of each Boolean function can be computed in polynomial time. A desired con-
trol sequence can also be obtained from the table in polynomial time using the
traceback technique. This algorithm was extended for BNs with general tree
structures [5].

Theorem 2. [5] Control of BN can be solved in polynomial time if BN has a
tree structure.

5.3 NP-Hardness Results on Control of BNs

As mentioned in the above, the dynamic programming algorithm for control
of general BNs takes exponential time and thus is not efficient. However, the
following theorem suggests that it is impossible (under the assumption of P �=NP)
to develop a polynomial time algorithm for the general case.

Theorem 3. [5] Control of BN is NP-hard.

Proof. We present a simple polynomial time reduction from 3SAT [14]. Let
y1, . . . , yN be Boolean variables (i.e., 0-1 variables). Let c1, . . . , cL be a set of

Algorithms for Inference, Analysis and Control of Boolean Networks 13

x4x3x2x1

v1 v2 v3

x1 x2 x3 x1 x2 x4 x2 x3 x4

Fig. 4. Reduction from 3SAT to Control of BN. An instance of 3SAT {y1∨y2∨y3, y1∨
y2 ∨ y4, y2 ∨ y3 ∨ y4} is transformed into this instance of Control of BN.

clauses over y1, . . . , yN , where each clause is a logical OR of at most three liter-
als. It should be noted that a literal is a variable or its negation (logical NOT).
Then, 3SAT is a problem of asking whether or not there exists an assignment
of 0-1 values to y1, . . . , yN which satisfies all the clauses (i.e., the values of all
clauses are 1).

From an instance of 3SAT, we construct a BN as follows (see also Fig. 4).
We let the set of nodes V = {v1, . . . , vL, x1, . . . , xN} where each vi corresponds
to ci and each xj corresponds to yj . Suppose that fi(yi1 , . . . , yi3) is a Boolean
function assigned to ci in 3SAT. Then, we assign fi(xi1 , . . . , xi3) to vi in the BN.
Finally, we let M = 1, v0 = [0, 0, . . . , 0] and vM = [1, 1, . . . , 1].

Then, it is straight-forward to see that there exists a control strategy 〈x(0),
x(1)〉 which makes v(1) = [1, 1, . . . , 1] if and only if there exists an assignment
which satisfies all the clauses. Since the reduction can be done in linear time,
Control of BN is NP-hard. ��

It is also shown in [5] that the control problem remains NP-hard even for BNs
having very restricted network structures. Especially, it is shown that it remains
NP-hard if the network contains only one control node and all the nodes are OR
or AND nodes (i.e., there is no negative control). However, it is unclear whether
the control problem is NP-hard or can be solved in polynomial time if a BN
contains a fixed number of directed cycles or loops (it is unclear even for the
case of two cycles). Deciding the complexity of such a special case is left as an
open problem.

Though we have shown negative results, NP-hardness does not necessarily
mean that we cannot develop practical algorithms which work efficiently in the
average case. For that purpose, an approximate finite-horizon optimal control
has been introduced [24] and a heuristic method based on Q-learning algorithm
for approximating the optimal infinite-horizon control policy has been proposed
[11]. However, application of these approaches is still limited to small networks.
Recently, Langmund and Jha proposed a method using techniques from the field
of model checking [19]. They reported that the method could be applied to a BN
model of embryogenesis in D. melanogaster with 15,360 Boolean variables.

14 T. Akutsu, M. Hayashida, and T. Tamura

6 Concluding Remarks

We have overviewed algorithmic aspects of inference, analysis and control of BNs
with focusing on the authors’ works. We understand that there is a criticism that
BN is too simple as a model of genetic networks and/or other biological networks.
However, studies on BNs may provide some insights into other models. At least,
negative results should hold for more general models. Some ideas in positive
results may also be useful for theoretical analyses and design of algorithms for
more general models. For instance, Mochizuki performed theoretical analysis on
the number of steady states in some continuous biological networks that are
based on nonlinear differential equations [22]. The core part of the analysis is
done in a combinatorial manner and is very close to that for BNs. Therefore,
it is worthy to study extensions of the methods and results on BNs for more
general models.

References

1. Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small
number of gene expression patterns under the Boolean network model. In: Proc.
Pacific Symposium on Biocomputing 1999, pp. 17–28 (1999)

2. Akutsu, T., Miyano, S., Kuhara, S.: Algorithms for identifying Boolean networks
and related biological networks based on matrix multiplication and fingerprint
function. Journal of Computational Biology 7, 331–343 (2000)

3. Akutsu, T., Miyano, S., Kuhara, S.: Inferring qualitative relations in genetic net-
works and metabolic pathways. Bioinformatics 16, 727–734 (2000)

4. Akutsu, T., Kuhara, S., Maruyama, O., Miyano, S.: Identification of genetic net-
works by strategic gene disruptions and gene overexpressions under a boolean
model. Theoretical Computer Science 298, 235–251 (2003)

5. Akutsu, T., Hayashida, M., Ching, W.-K., Ng, M.K.: Control of Boolean networks:
Hardness results and algorithms for tree-structured networks. Journal of Theoret-
ical Biology 244, 670–679 (2007)

6. Arpe, J., Reischuk, R.: When does greedy learning of relevant attributes succeed?
In: Lin, G. (ed.) COCOON. LNCS, vol. 4598, pp. 296–306. Springer, Heidelberg
(2007)

7. Bilke, S., Sjunnesson, F.: Number of attractors in random Boolean networks. Phys-
ical Review E 72, 016110 (2005)

8. Datta, A., Choudhary, A., Bittner, M.L., Dougherty, E.R.: External control in
Markovian genetic regulatory networks. Machine Learning 52, 169–191 (2003)

9. Devloo, V., Hansen, P., Labbé, M.: Identification of all steady states in large net-
works by logical analysis. Bulletin of Mathematical Biology 65, 1025–1051 (2003)

10. Drossel, B., Mihaljev, T., Greil, F.: Number and length of attractors in a critical
Kauffman model with connectivity one. Physical Review Letters 94, 088701 (2005)

11. Faryabi, B., Datta, A., Dougherty, E.R.: On approximate stochastic control in
genetic regulatory networks. IET Systems Biology 1, 361–368 (2007)

12. Fukagawa, D., Akutsu, T.: Performance analysis of a greedy algorithm for inferring
Boolean functions. Information Processing Letters 93, 7–12 (2005)

Algorithms for Inference, Analysis and Control of Boolean Networks 15

13. Garg, A., Xenarios, I., Mendoza, L., DeMicheli, G.: An efficient method for dynamic
analysis of gene regulatory networks and in silico gene perturbation experiments.
In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI), vol. 4453, pp.
62–76. Springer, Heidelberg (2007)

14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Co., New York (1979)

15. Irons, D.J.: Improving the efficiency of attractor cycle identification in Boolean
networks. Physica D 217, 7–21 (2006)

16. Kauffman, S.A.: The Origins of Order: Self-organization and Selection in Evolution.
Oxford Univ. Press, New York (1993)

17. Kitano, H.: Computational systems biology. Nature 420, 206–210 (2002)
18. Kitano, H.: Cancer as a robust system: implications for anticancer therapy. Nature

Reviews Cancer 4, 227–235 (2004)
19. Langmead, C.J., Jha, S.K.: Symbolic approaches for finding control strategies in

Boolean networks. In: Proc. 6th Asia-Pacific Bioinformatics Conference, pp. 307–
319. Imperial College Press, London (2008)

20. Liang, S., Fuhrman, S., Somogyi, R.: REVEAL, a general reverse engineering algo-
rithm for inference of genetic network architectures. In: Proc. Pacific Symposium
on Biocomputing 1998, pp. 18–29 (1998)

21. Milano, M., Roli, A.: Solving the safistiability problem through Boolean networks.
In: Lamma, E., Mello, P. (eds.) AI*IA 1999. LNCS (LNAI), vol. 1792, pp. 72–93.
Springer, Heidelberg (2000)

22. Mochizuki, A.: An analytical study of the number of steady states in gene regula-
tory networks. Journal of Theoretical Biology 236, 291–310 (2005)

23. Mossel, E., O’Donnell, R., Servedio, R.A.: Learning functions of k relevant vari-
ables. Journal of Computer and System Sciences 69, 421–434 (2004)

24. Ng, M.K., Zhang, S.-Q., Ching, W.-K., Akutsu, T.: A control model for Markovian
genetic regulatory network. Transactions on Computational Systems Biology V,
36–48 (2006)

25. Pal, R., Datta, A., Bittner, M.L., Dougherty, E.R.: Intervention in context-sensitive
probabilistic Boolean networks. Bioinformatics 21, 1211–1218 (2005)

26. Pal, R., Datta, A., Bittner, M.L., Dougherty, E.R.: Optimal infinite-horizon control
for probabilistic Boolean networks. IEEE Transactions on Signal Processing 54,
2375–2387 (2006)

27. Samuelsson, B., Troein, C.: Superpolynomial growth in the number of attractors
in kauffman networks. Physical Review Letters 90, 098701(2003)

28. Shmulevich, I., Dougherty, E.R., Kim, S., Zhang, W.: Probabilistic Boolean net-
works: a rule-based uncertainty model for gene regulatory networks. Bioinformat-
ics 18, 261–274 (2002)

29. Tamura, T., Akutsu, T.: An improved algorithm for detecting a singleton attractor
in a Boolean network consisting of AND/OR nodes. In: Proceedings of the 3rd
International Conference on Algebraic Biology (to appear)

30. Zhang, S.-Q., Hayashida, M., Akutsu, T., Ching, W.-K., Ng, M.K.: Algorithms for
finding small attractors in Boolean networks. EURASIP Journal on Bioinformatics
and Systems Biology 2007, 20180 (2007)

Tutorial on Model Checking:

Modelling and Verification in Computer Science

Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

Abstract. This paper serves as background material for an invited tu-
torial on model checking given at the Third International Conference
on Algebraic Biology (AB 2008). The intended audience of the tutorial
were researchers in natural science, particularly life science, but this pa-
per may also serve as a light-weight introduction into model checking
techniques in general.

1 Introduction

In that part of computer science which is concerned with constructing systems,
modelling usually has a different flavor than modelling in natural science. The
artifacts resp. systems engineered by computer scientists usually do have pre-
cise mathematical semantics and work according to these abstract semantics.
Therefore computer science allows to use precise models, which are conservative
abstractions:

If a model of a computer science system has a certain property,
then the real system has this property as well.

This statement is of course incorrect if the system is not interpreted on an
abstract level. For instance, if a processor on which a program runs has a defect
or even just the compiler that produced the machine code from the original
program, then the system as a whole does not have to be correct and it may
violate the desired property, even though the program, e.g. the computer science
artifact, is correct.

Nevertheless, computer science is able to prove resp. check properties of real
systems, because these systems, in the form of programs or circuit designs, are
still abstract. Using automatic techniques for checking properties of computer
science systems is the purpose of model checking.

Research in model checking is centered around algorithmic aspects, particu-
larly on how to implement model checkers, or related questions, such as which
specification and modelling languages can be model checked efficiently. In this
paper we focus on those approaches that turn out be successful in practice.

2 Modelling

An important question is where the models come from. There are two radically
different ways to obtain models. In the first scenario a system to be built is

K. Horimoto et al. (Eds.): AB 2008, LNCS 5147, pp. 16–21, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Tutorial on Model Checking: Modelling and Verification 17

modelled using some high-level and abstract modelling language. Usually only
one aspect of the final not yet existing system is modelled, such as synchroniza-
tion of parallel components. Then the model can be analyzed through simulation,
i.e. by testing it, or by automatically checking certain properties with the help
of a model checker.

After the designer has a good understanding of all the aspects of the model, he
makes sure that the model is not overly simplistic and also does not contain any
fundamental flaws. Then the model is typically thrown away and the system
reimplemented in detail from scratch, usually in a totally different but more
concrete language. This is a proven technique in industry, particular since the
idea of exploring the design space through an executable model, which can be
simulated, is very useful even without using model checking techniques.

In the second scenario, model checkers are applied to concrete systems, such
as hardware designs, device drivers, or in general software, described in concrete
implementation respectively system description languages. The point is that the
description of the system in this scenario is detailed enough, even though it is still
a model of the real system, that automatic techniques, particularly compilers,
can be used to generate the final product.

Originally, models were finite state. This restriction, at least in principle,
allows model checkers to be fully automatic. Then model checking terminates,
and it either determines that a property holds on the model or the model checker
provides a witness in form of a trace that shows that the property is violated.
But due to the state-explosion-problem, which says that the number of states in
a model is exponential in the size of its description, it may just take too much
time to explore all these states and typically also too much space. Much progress
has been made over the years to ameliorate this situation and improve scalability
of model checking.

Some of the research in model checking also went into the other direction,
and lifted the finiteness restriction. There are various forms of infinite systems,
for which theoretical results are available and practical applications exist. One
direction is to allow continuous variables in the data domain, another to model
continuous time. A third direction is to add probability, and a fourth to param-
eterize the size or the number of components. Another extension is to replace
finite state automata by push down automata. All of these extension have in
common that model checking only remains decidable, and thus an automatic
almost push-button technology, if the class of models allow finite abstractions in
some way or another.

3 History

Model checking was invented more than 25 years ago in the early 80’ties by E.
Clarke and A. Emerson [5] and independently by J. Queille and J. Sifakis [14].
There was a workshop [16] affiliated to the Federated Conference on Logic in
Computer Science (FLOC’06) dedicated to this anniversary. Beside the proceed-
ings [16] of this workshop, another reference for model checking research is the

18 A. Biere

model checking book [7]. More recently Clarke, Emerson and Sifakis won the
2007 Turing Award for their pioneering work on model checking.

From a historical perspective it is probably important to mention that initially
these ideas were not immediately embraced by the formal verification commu-
nity eagerly, which at that time was still mainly focused on theorem proving
techniques. The main argument was that model checking, as it was described
initially would only work on tiny models and thus would not scale.

On the one hand this argument is still valid, particularly if the goal is to pro-
duce a fully verified concrete system. Without additional manual and automatic
abstraction techniques, model checking alone will fail in such an endeavor due
to the large number of system states, that have to be explored.

On the other hand model checking has been very successful in providing
complementary techniques to simulation and testing in order to partially ver-
ify concrete systems. Particularly in circuit design, where testing costs and also
costs for defects that slip through testing are very high, model checking is applied
routinely nowadays. It was shown recently, that hybrid techniques that combine
model checking with automated theorem proving, can check much larger systems
than each technique alone, even in checking properties of device drivers in an
industrial operating system [1], for which this hybrid technique is actually used
routinely now as well.

Finally, using model checking checking for pure models, e.g. the first scenario
discussed in the previous section, will always be beneficial for systems with
complex interactions, such as communication protocols etc.

4 Temporal Logic

Another aspect where model checking differs from other formal approaches is the
choice of the specification languages, which are used to describe properties. In
essence model checking is concerned with sequential or temporal behavior of sys-
tems. This kind of properties are particularly important for reactive, distributed
or parallel systems and typically are described in temporal logic. A. Pnueli [12]
is considered to be the first who noticed that specifications of such concurrent
systems would benefit from using temporal logic.

In its simplest form temporal logic allows to specify two kinds of temporal
behavior. A safety property states that a certain error or catastrophic state is not
reachable. A dual formulation is, that a safety property holds, if all reachable
states fulfill a certain invariant, which is valid initially and remains valid no
matter how the system evolves. In terms of programming languages an assertion
is a typical simple safety property.

More complex temporal specifications are liveness properties, also often re-
ferred to as progress properties. They are used to specify reactiveness, progress
or non-starvation etc. A typical example are request/acknowledge properties,
for instance calling the elevator (request), will eventually lead to the elevator
doors to open (acknowledge). Another example is that a system after powering
up will eventually end up in a properly “initialized” state, no matter in what

Tutorial on Model Checking: Modelling and Verification 19

configuration it started. Liveness usually only makes sense in combination with
additional fairness assumptions, for instance, that each component is allowed to
have its turn infinitely often.

There are various flavors of temporal logic, most notably computation tree
logic (CTL) and linear temporal logic (LTL). Related formalisms, such as omega-
regular languages and µ-calculus are also used quite frequently. More information
on these formalisms can be found in [7]. There are also standardized temporal
logics in industry, e.g. the property specification logic (PSL).

5 Technology

At the core of model checking are algorithms that implement state space traver-
sal. The reachable state space is traversed to find error states that violate safety
properties, or to find cyclic paths on which no progress is made as counter exam-
ple for liveness properties. In most cases state space traversal can be reformulated
as fix-point computation, which for certain temporal logics is the only way to
describe model checking algorithms.

Initially, model checkers worked on an explicit state space representation.
Each state of the system is represented in the computer explicitly and typically
stored in a large hash table. The size of the hash table is closely related to the
number of reachable states of the system and thus computer memory became
the bottle neck.

There are various techniques to improve space consumption in explicit state
model checkers. The most important one is partial-order reduction, which is
particularly useful for asynchronous models such as loosely coupled software
components, petri-net models etc. Also, if the model is symmetric, these sym-
metries can be factored out during state space traversal. Finally, if the number
of states is still too large to be handled, the idea of bit-state hashing trades scal-
ability for completeness, e.g. model checking becomes a falsification technique,
similar to traditional testing, but unable to prove correctness.

The most successful explicit model checker is the SPIN model checker. Its
main author, G. Holzmann, received the ACM Software System Award in 2002
for his work on SPIN. His latest book [9] on SPIN is probably the best reference
to start learning more about explicit state model checking and its optimizations
mentioned above. There is a yearly workshop series on SPIN as well, which has
more recent results.

For infinite models there are no explicit methods. States have to be represented
symbolically. But even for finite models it is possible to represent states, more
precisely set of states, symbolically. The goal is to overcome the state-explosion-
problem.

In the mid 80’ties Randy Bryant presented reduced ordered binary decision
diagrams (BDDs) as a new data structure for symbolically representing and
manipulating boolean functions efficiently [4]. This paper has turned out to be
one of the most cited papers in computer science.

20 A. Biere

Also at CMU a couple of years later E. Clarke and his students picked up this
idea and showed that BDDs can also be used to represent set of states with BDDs
and more importantly, how state space traversal techniques based on fix-point
computations can be implemented efficiently using BDD operations. This break
through in the early 90’ties is documented in K. McMillan’s thesis [10] which also
contains a detailed description of his model checker, the symbolic model verifier
SMV. One can even argue that the event of symbolic model checking started a
renaissance of formal verification in general now with a focus on real applications.

The research in model checking of the 90’ties produced many refinements of
symbolic model checking, both in the core algorithms for finite systems, but also
in applying similar techniques to infinite systems. The literature is too large
to be listed here explicitly. Please refer to the model checking book [7] and in
general to the proceedings of the main conference in model checking research,
the conference of computer-aided verification (CAV).

In the late 90’ties it was observed that techniques for boolean satisfiability
checking, i.e. SAT solvers, could handle much larger formulas than BDDs, and
again researchers at CMU came up with the idea of bounded model checking
(BMC) [2], which applies SAT solvers to the model checking problem. BMC in its
basic form is a falsification technique, at least in practice, i.e. it trades complete-
ness for scalability. However, follow-up work on BMC improved this situation,
particular the work on k-induction [15] and interpolation [11]. A survey on these
and other related techniques based on using SAT for model checking can be
found in [13].

The improvement in SAT solver technology even accelerated in the last 8 years
after the introduction of BMC and made model checking much more useful in
industry. SAT and its extension of satisfiability modulo theories (SMT) are the
working horse in almost all state-of-the-art applications of formal methods in
industry. Again as example consider [1], which uses SMT solvers to automatically
generate abstractions [8] for actual device drivers, which are then checked by
a symbolic model checker. If the abstraction is too coarse the abstraction is
refined [6], again with the help of SMT solvers. For more information on SAT
see the Handbook of Satisfiability [3] and recent proceedings of the yearly SAT
conference.

6 Conclusion

This short note represents a personal interpretation of the first 27 years of model
checking from a computer science perspective. It summarizes the historical de-
velopment and gives pointers to recent important results. We hope that we con-
tributed to spread these ideas further across the boundaries of computer science.

References

1. Ball, T., Rajamani, S.: Automatically validating temporal safety properties of in-
terfaces. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057. Springer, Heidelberg
(2001)

Tutorial on Model Checking: Modelling and Verification 21

2. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999. LNCS, vol. 1579.
Springer, Heidelberg (1999)

3. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
IOS Press, Amsterdam (to be published, 2008)

4. Bryant, R.: Graph Based Algorithms for Boolean Function Manipulation. IEEE
Trans. on Computers C(35) (1986)

5. Clarke, E., Emerson, E.: Design and Synthesis of Synchronization Skeletons Using
Branching-Time Temporal Logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, Springer, Heidelberg (1982)

6. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement for symbolic model checking. J. ACM 50(5) (2003)

7. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

8. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254. Springer, Heidelberg (1997)

9. Holzmann, G.: The SPIN Model Checker. Addison Wesley, Reading (2004)
10. McMillan, K.: Symbolic Model Checking: An approach to the State Explosion

Problem. Kluwer, Dordrecht (1993)
11. McMillan, K.: Interpolation and SAT-based Model Checking. In: Hunt Jr., W.A.,

Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725. Springer, Heidelberg (2003)
12. Pnueli, A.: The temporal logic of programs. In: Proc. IEEE Symp. on Found. of

Computer Science (1977)
13. Prasad, M., Biere, A., Gupta, A.: A survey on recent advances in SAT-based formal

verification. Software Tools for Technology Transfer (STTT) 7(2) (2005)
14. Quielle, J., Sifakis, J.: Specification and verification of concurrent systems in CE-

SAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS,
vol. 137, Springer, Heidelberg (1982)

15. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction
and a SAT-solver. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS,
vol. 1954. Springer, Heidelberg (2000)

16. Veith, H., Grumberg, O. (eds.): 25 Years of Model Checking. LNCS, vol. 5000.
Springer, Heidelberg (to be published, 2008)

Differential Algebra and System Modeling in

Cellular Biology

François Boulier and François Lemaire

University Lille I, LIFL, 59655 Villeneuve d’Ascq, France
{Francois.Boulier,Francois.Lemaire}@lifl.fr

http://www.lifl.fr/~{boulier,lemaire}

Abstract. Among all the modeling approaches dedicated to cellular bi-
ology, differential algebra is particularly related to the well-established
one based on nonlinear differential equations. In this paper, it is shown
that differential algebra makes one of the model reduction methods both
simple and algorithmic: the quasi-steady state approximation theory, in
the particular setting of generalized chemical reactions systems. This re-
cent breakthrough may suggest some evolution of modeling techniques
based on nonlinear differential equations, by incorporating the reduction
hypotheses in the models. Potential improvements of parameters fitting
methods are discussed too.

Keywords: Computer algebra, differential algebra, cellular biology, sys-
tem modeling.

1 Introduction

Among all the modeling approaches dedicated to cellular biology, differential
algebra is particularly related to the well-established one based on nonlinear
differential equations [1,2,3].

Differential equations apply to rather small models. There are many subap-
proaches, restricted to (sometimes piecewise) linear differential equations,
qualitative simulations, . . . [4,5,6]. The approach based on nonlinear differential
equations was, however, successfully applied for the analysis of many genetic reg-
ulatory circuits, including those that work during complex animal embryogenesis
[7]. One of the major successes of this approach is certainly the modeling of the
segment polarity network of the drosophila [8,9].

This paper is mostly concerned with the model reduction problem for chemical
reactions systems based on the generalized mass action law [10]. Among all the
approximation techniques available for such systems [11, lumping, sensitivity
analysis, . . .], this paper is exclusively concerned with the quasi-steady state
approximation theory.

The model reduction problem for systems of differential equations broadly
consists in simplifying the given system, by means of some simplification hy-
potheses. It aims to get a tractable reduced system, while preserving some prop-
erties of interest (e.g. presence of oscillations, number of equilibria).

Modeling approaches based on nonlinear differential equations do not all di-
rectly rely on the formalism of chemical reactions systems. Quite often, more

K. Horimoto et al. (Eds.): AB 2008, LNCS 5147, pp. 22–39, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Differential Algebra and System Modeling in Cellular Biology 23

sophisticated functions are used such as the Henri-Michaelis-Menten factors and
the Hill functions. It is worth noticing that these sophisticated functions can
quite often be deduced from generalized chemical reactions systems through
some model reduction. However, practitioners using these functions do not al-
ways explicitly formulate the simplifying assumptions which justify these ap-
proximations. Thereby, they do not formulate the domains of validity of their
models as precisely as they could.

Differential algebra makes the quasi-steady state approximation method both
simple and algorithmic in the particular setting of systems of generalized chem-
ical reaction systems [12]. This fact thus suggests to widen the use of these
systems for systems modeling, and to incorporate in the models the hypotheses
which lead to the more sophisticated formulas. One should thereby expect to
obtain models with more ascertained domains of validity and to estimate the
practical relevance of some of the simplification hypotheses.

In addition to the above issues, the differential algebra and the quasi-steady
state approximation theory also suggest improvements of the parameters fitting
problem, which is an important concern in systems modeling. It has been known
for a few years that differential elimination somehow transforms nonlinear least
squares into linear ones in the parameters estimation problem, by suggesting a
starting point for the Newton-like estimation methods [13,14]. By incorporating
moreover, in these methods, the recent progress obtained in the quasi-steady
state approximation theory, one may also expect to reduce the stiffness of the
differential systems that they need to numerically integrate, thereby speeding
up the overall optimization processes.

2 Differential Elimination

The content of this section owes a lot to [15]. We refer to that paper for more
details.

The differential elimination theory is a subtheory of the differential algebra
[16,17]. See also [18]. The differential elimination processes that are presented in
this paper take as input two parameters: a system of polynomial (thus nonlin-
ear) differential equations, ordinary or with partial derivatives1 and a ranking2.
They produce on the output an equivalent finite set of polynomial differential
systems, which are simpler, in the sense that they involve some differential equa-
tions which are consequences of the input system but were somehow hidden. The
output may consist of more than one differential system because the differential
elimination process may need to split cases. The set of the differential equations
which are consequences of the input system forms a so-called differential ideal
of some polynomial differential ring. Since this ideal is an infinite set, a nat-
ural question arises: how does the process select the finitely many differential
equations which appear in the output system? This is indeed the role of the
rankings.
1 This paper is only concerned with the ordinary case.
2 Emphasized words have a technical meaning, which will be defined in section 2.2.

24 F. Boulier and F. Lemaire

2.1 Example

The following example, borrowed from [19, Chapter VII, page 454], is a so-
called differential algebraic equations system, since it mixes differential and non
differential equations. There are three unknown time varying functions (three
dependent variables) x, y and z. The dot over a variable denotes its derivative
w.r.t. the independent variable, which is assumed to be the time, throughout
this paper:

ẋ = 0.7 y + sin(2.5 z), ẏ = 1.4 x+ cos(2.5 z), 1 = x2 + y2. (1)

Let us try to apply an explicit numerical integration scheme such as Euler’s
one over this system, for some initial conditions. For each dependent variable
(say) x, the scheme transforms the explicit differential equation ẋ = f(x, y, z) as
a recurrence formula xn+1 = xn +h f(xn, yn, zn), where h denotes some stepsize,
and computes the terms xn the ones after the others. However, the absence of
a differential equation of the following form seems to forbid the application of
Euler’s scheme:

ż = f(x, y, z) (2)

Indeed, this equation is not missing. It is a “hidden” consequence of the input
system: it can be automatically extracted from it by differential elimination. In
order to show how to proceed with the help of the diffalg package of MAPLE,
one first converts the system as a polynomial differential system. For this, one
denotes s the sine, c the cosine and one introduces a few more equations. The
following differential polynomial system is equivalent to the above one.

ẋ = 0.7 y + s, ẏ = 1.4 x+ c, 1 = x2 + y2,

ṡ = 2.5 ż c, ċ = −2.5 ż s, 1 = s2 + c2.
(3)

In order to compute equation (2) using diffalg, one stores the differential poly-
nomial system in the variable syst, converting floating point numbers as rational
numbers.

with (diffalg):

syst := [diff(x(t),t) - 7/10*y(t) - s(t),

diff(y(t),t) - 14/10*x(t) - c(t),

x(t)^2 + y(t)^2 - 1,

diff(s(t),t) - 25/10*diff(z(t),t)*c(t),

diff(c(t),t) + 25/10*diff(z(t),t)*s(t),

s(t)^2 + c(t)^2 - 1]:

Then the variable R is assigned the context of the computation: the only deriva-
tion is taken with respect to the time, the notation is the standard diff notation
of MAPLE and the ranking is provided. According to the ranking notation of
the diffalg package, this is the orderly ranking such that s > c > x > y > z.
The properties of that ranking ensure that, if there exists a differential equation
of the form (2) in the radical of the differential ideal generated by syst then the
differential elimination process will find it.

Differential Algebra and System Modeling in Cellular Biology 25

R := differential_ring (derivations = [t], notation = diff,

ranking = [[s, c, x, y, z]]):

Next the Rosenfeld-Gröbner function [20] is applied to syst and R. It returns a
list of MAPLE tables. Each table provides a regular differential chain defining
some differential ideal. The list should be understood as an intersection. Over
the example, the list only involves one entry so that the regular differential
chain does represent the radical differential ideal generated by the input system.
The desired equation stands on the second place of the chain (only the two first
equations are displayed). Enlarging the input system with this equation, it is now
easy to perform any numerical integration method and our problem is solved.

ideal := Rosenfeld_Groebner (syst, R):

rewrite_rules (ideal [1]);[d

dt
y (t) =

7
5
x (t) + c (t) ,

d

dt
z (t) =

1
25

3500− 12348 (y (t))6 + 13230 c (t)x (t) (y (t))4 + 25809 (y (t))4

441 (y (t))6 − 882 (y (t))4 + 541 (y (t))2 − 100

+
1
25
−14700 x (t) (y (t))2 c (t)− 16961 (y (t))2 + 3940 x (t) c (t)

441 (y (t))6 − 882 (y (t))4 + 541 (y (t))2 − 100
, · · ·

]

2.2 Differential Algebra

A differential ring (resp. field) is a ring (resp. field) R endowed with a derivation
(this paper is restricted to the case of a single derivation but the theory is more
general) i.e. a unitary mapping R → R such that (denoting ȧ the derivative
of a):

˙̂
(a+ b) = ȧ+ ḃ,

˙̂
(a b) = ȧ b+ a ḃ. (4)

Observe that, theoretically, the derivation is an abstract operation. For legibility,
one views it as the derivation w.r.t. the time t. Algorithmically, one is led to ma-
nipulate finite subsets of some differential polynomial ring R = K{U} where K
is the differential field of coefficients (in practice, K = Q, Q(t) or Q(k1, . . . , kr)
where the ki denote parameters that would be assumed to be algebraically in-
dependent) and U is a finite set of dependent variables3. The elements of R, the
differential polynomials are just polynomials in the usual sense, built over the
infinite set, denoted ΘU , of all the derivatives of the dependent variables.

3 In the differential algebra theory, the terminology differential indeterminates is pre-
ferred to dependent variables for derivations are abstract and differential indetermi-
nates are not even assumed to correspond to functions. In order not to mix different
expressions in this paper, the second expression, which seems to be more widely
known, was chosen.

26 F. Boulier and F. Lemaire

Definition 1. A differential ideal of a differential ring R is an ideal of R, stable
under the action of the derivation.

Let F be a finite subset of a differential ring R. The set of all the finite linear
combinations of various orders derivatives of elements of F , with elements of R
for coefficients, is a differential ideal. It is called the differential ideal generated
by F . An ideal A is said to be radical if a ∈ A whenever there exists some
nonnegative integer p such that ap ∈ A. The radical of an ideal A is the set of all
the ring elements a power of which belongs to A. The radical of a (differential)
ideal is a radical (differential) ideal.

Theorem 1. Let R be a differential polynomial ring and F be a finite subset
of R. A differential polynomial p of R lies in the radical of the differential ideal
generated by F if and only if it vanishes over every analytic solution of F .

Proof. [16, chap. II, §7, 11] or [21].

The Rosenfeld-Gröbner algorithm [20] solves the membership problem to radical
differential ideals. To present it, one needs to define the concept of ranking.

Definition 2. If U is a finite set of dependent variables, a ranking over U is a
total ordering over the set ΘU of all the derivatives of the elements of U which
satisfies: a < ȧ and a < b⇒ ȧ < ḃ for all a, b ∈ ΘU .

Let U be a finite set of dependent variables. A ranking such that, for every
u, v ∈ U , the ith derivative of u is greater than the jth derivative of v whenever
i > j is said to be orderly. If U and V are two finite sets of dependent variables,
one denotes U � V every ranking such that any derivative of any element of U
is greater than any derivative of any element of V . Such rankings are said to
eliminate U w.r.t. V .

Assume that some ranking is fixed. Then one may associate with any differential
polynomial f ∈ K{U} \ K the greatest (w.r.t. the given ranking) derivative v ∈
ΘU such that deg(f, v) > 0. This derivative is called the leading derivative or the
leader of f .

Rankings permit to define leaders. Leaders permit to use differential polyno-
mial as rewrite (substitution) rules. Assume that f = ad v

d + · · ·+ a1 v+ a0 is a
differential polynomial with leader v (the coefficients ai are themselves differen-
tial polynomials). Then the equation f = 0 can be written (as the rewrite rules
function of diffalg presented in section 2.1 does, though it uses an equal sign
instead of an arrow):

vd −→ −ad−1 v
d−1 + · · ·+ a1 v + a0

ad
· (5)

It can be used afterwards as a rule to simplify any differential polynomial g such
that deg(g, v) ≥ d or deg(g, v(k)) > 0 where v(k) denotes any proper derivative
of v. There are precise algorithms for performing these sorts of substitution
by finite sets of rewrite rules: Ritt’s reduction algorithm or the normal form
algorithm [21, algorithm NF].

Differential Algebra and System Modeling in Cellular Biology 27

The Rosenfeld-Gröbner algorithm gathers as input a finite system F of dif-
ferential polynomials and a ranking. It returns a finite family (possibly empty)
C1, . . . , Cr of finite subsets of K{U}\K, called regular differential chains. Each
system Ci defines a differential ideal Ci (it is a characteristic set of Ci) in the
sense that, for any f ∈ K{U}, we have

f ∈ Ci iff NF(f, Ci) = 0. (6)

The relationship with the radical A of the differential ideal generated by F is
the following:

A = C1 ∩ · · · ∩ Cr. (7)

When r = 0 we have A = K{U}. Combining both relations, one gets an al-
gorithm to decide membership in A. Indeed, given any f ∈ K{U} we have:

f ∈ A iff NF(f, Ci) = 0, 1 ≤ i ≤ r. (8)

The differential ideals Ci do not need to be prime. They are however necessarily
radical. The NF(·, yCi) function permits to compute canonical representatives
of the residue classes of the differential ring R/Ci.

3 Quasi-Steady State Approximation for Generalized
Chemical Reactions Systems

Differential elimination makes the quasi-steady state approximation (QSSA) the-
ory both simple and algorithmic in the special setting of generalized4 chemical
reactions systems as shown by [12].

3.1 QSSA in General: Fast and Slow Variables

In principle, QSSA applies to systems under the two time-scales standard form.
Consider the following system in two dependent variables x and y (for legibility,
but there may be more than two variables) and assume that ε is a small positive
number.

ẋ = f(x, y), ε ẏ = g(x, y). (9)

On a random point (x, y) ∈ R2, the speed of y is high and thus, under some
general conditions, rapidly approaches an area where g(x, y) � 0. The variable x
is said to be slow while the variable y is said to be fast. The QSSA amounts to
approximate such a system by the following one:

ẋ = f(x, y), 0 = g(x, y). (10)

which mixes differential and algebraic equations. Note that this approximation
is only valid under some conditions (e.g. stability of the differential system in
4 Chemical reactions systems are said to be generalized when their elementary reac-

tions are not required to be balanced. See [10].

28 F. Boulier and F. Lemaire

the neighborhood of g(x, y) = 0) given in the Tikhonov theorem [22] and after
the transient step is elapsed.

Performing a QSSA over a differential system presents two advantages: it
reduces the number of ODE and it tends to transform stiff systems into nonstiff
ones, much easier to solve numerically.

However, the QSSA is not proven algorithmic in general. The issue relies in
the fact that the fast and slow variables, if they exist, may only be obtained
through a change of coordinates and there does not seem to exist any algorithm
which decides, given a differential system, if such a change of coordinates does
exist.

3.2 QSSA for Chemical Reactions Systems: Fast and Slow Reactions

For differential systems arising from generalized chemical reactions systems,
there exists a standard way to perform the QSSA, provided that the set of
chemical reactions is divided in two parts: the fast ones and the slow ones.

As far as we know, the first clear relationship between this method and the
Tikhonov theorem was established in [23]. Afterwards, close variants of the same
method were rediscovered more or less independently [24,25]. Though all these
papers present methods, none of them is fully presented in an algorithmic man-
ner. This may at least partly be due to the fact that some steps of the methods
require the inversion of a matrix over a residue class ring, a non obvious task
which may imply splitting cases.

Indeed, it turns out that the whole method is equivalent to a differential
elimination process, as shown for the first time in [12]. For a general presentation
of the method, one refers to [12]. In this paper, one only presents the method over
a famous example: the Henri-Michaelis-Menten reduction of the basic enzymatic
reaction system:

E + S
k1−−−−→←−−−−
k2

C
k3−−−−→ E + P. (11)

The initial system of ODE writes: Ẋ = N V i.e.⎛⎜⎜⎝
Ė

Ċ

Ṡ

Ṗ

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−1 1 1

1 −1 −1
−1 1 0

0 0 1

⎞⎟⎟⎠ ·
⎛⎝k1E S

k2 C
k3 C

⎞⎠ (12)

where X is the vector of the chemical species, N is the system stoichiometry
matrix and V is the vector of the reaction rates. The stoichiometry matrix is
built as follows: it involves one row per species and one column per reaction.
The entry at row r, column c is the number of molecules of species r produced
by the reaction c (i.e. the number of times species r occurs on the reaction right
handside minus the number of times it occurs on the reaction left handside). The
rate of a reaction is the product of the left handside species (with multiplicities)

Differential Algebra and System Modeling in Cellular Biology 29

times the reaction rate (the parameter over the arrow). Expanding the formula,
one gets:

Ė = −k1E S + (k2 + k3)C,
Ṡ = −k1E S + k2 C,

Ċ = k1E S − (k2 + k3)C,
Ṗ = k3 C.

(13)

Among all the assumptions leading to the Henri-Michaelis-Menten formula:

Ṡ = −Vmax S

K + S
, (14)

the only one concerning the QSSA is that k1, k2 � k3 i.e. that the two leftmost
reactions of the chemical system (11) are fast while the rightmost one is slow.
The other assumptions will be given later.

In order to perform the QSSA over the above system, one builds a DAE
system from system (13) by replacing the contribution of the fast reactions by
a new dependent variable, F1, and by inserting an algebraic equation, defining
the “slow variety”, stating that the fast reactions are at quasi-equilibrium.

Ė = −F1 + k3 C,

Ṡ = −F1,

Ċ = F1 − k3 C,

Ṗ = k3 C,
0 = k1E S − k2 C.

(15)

In general there may be many different new dependent variables Fi and many dif-
ferent algebraic equations. Observe that, over the example, the two fast reactions
are considered as one reversible reaction and associated to only one dependent
variable: F1. The general process is described in section 3.3. Differential elim-
ination is performed below using diffalg. The parameters are put in the base
field F of the equations to avoid discussions over their values (they are then
considered as algebraically independent). The inequation C(t) �= 0 is inserted to
avoid considering this degenerate case. The output is pretty printed.

with(diffalg):

DAE_syst := [

diff(E(t),t) - (-F1(t) + k3*C(t)),

diff(S(t),t) + F1(t),

diff(C(t),t) - (F1(t) - k3*C(t)),

diff(P(t),t) - k3*C(t),

k1*E(t)*S(t) - k2*C(t)]:

F := field_extension (transcendental_elements=[k1,k2,k3]):

R := differential_ring (ranking=[[F1], [C,E,P,S]], notation=diff,

derivations=[t], field_of_constants=F):

ideal := Rosenfeld_Groebner (DAE_syst, [C(t)], R);

ideal := [characterizable]

rules := rewrite_rules(ideal [1]);

30 F. Boulier and F. Lemaire[
F1 =

k3 k1E S (k1 S + k2)
k2 (k1 S + k1 E + k2)

, Ė =
k2
1 E

2 k3 S

k2 (k1 S + k1E + k2)
, Ṗ =

k3 k1E S

k2
,

Ṡ = − k3 k1 E S (k1 S + k2)
k2 (k1 S + k1E + k2)

, C =
k1 E S

k2

]
Of course, one does not recognize formula (14) in this regular differential chain:
the reduction is incomplete since the extra assumptions made in the Henri-
Michaelis-Menten reduction have not yet been taken into account. These as-
sumptions are: S(0) � E(0), P � 0 and C(0) = 0. One refers to [12] for a
complete reduction.

3.3 Construction of the DAE to Consider for the QSSA

First split the stoichiometry matrix N into two matrices N f and Ns putting the
columns which correspond to fast reactions in Nf and the ones which correspond
to slow reactions in Ns. Split accordingly the rows of the vector V into two
vectors Vf and Vs. One gets a formula Ẋ = Ns Vs +Nf Vf . Over system (12), one
gets: ⎛⎜⎜⎝

Ė

Ċ

Ṡ

Ṗ

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1
−1

0
1

⎞⎟⎟⎠ · (k3 C
)

+

⎛⎜⎜⎝
−1 1

1 −1
−1 1

0 0

⎞⎟⎟⎠ · (k1E S
k2 C

)
. (16)

Determine a maximal linearly independent set of columns of Nf (i.e. a basis of
that matrix) and remove the other ones, giving a new matrix N f . Update the
vector of reaction rates Vf , giving a new vector V f such that Nf Vf = N f V f .
Over the example, removing the second column, one gets a new formula Ẋ =
Ns Vs +N f V f giving system (13):⎛⎜⎜⎝

Ė

Ċ

Ṡ

Ṗ

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1
−1

0
1

⎞⎟⎟⎠ · (k3 C
)

+

⎛⎜⎜⎝
−1

1
−1

0

⎞⎟⎟⎠ · (k1 E S − k2 C
)
. (17)

Replace the vector V f by a vector F of new dependent variables Fi. The slow
variety is defined by letting the entries of V f all equal to zero. The DAE to be
considered for quasi-steady state approximation is

Ẋ = Ns Vs +N f F, V f = 0. (18)

Over the example, one gets a formula giving system (15):⎛⎜⎜⎝
Ė

Ċ

Ṡ

Ṗ

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1
−1

0
1

⎞⎟⎟⎠ · (k3 C
)

+

⎛⎜⎜⎝
−1

1
−1

0

⎞⎟⎟⎠ · (F1

)
,

(
k1E S − k2 C

)
= 0. (19)

Differential Algebra and System Modeling in Cellular Biology 31

3.4 Limits and Generalizations of the Method

In some cases, the Fi variables cannot be all eliminated. In that case, the method
does not apply. In [12], this is checked by testing whether NF(Ẋi, C) only de-
pends on the Xj (with order 0), for each dependent variable Xi and each regular
differential chain C produced by differential elimination. A simple example is
given by the generalized chemical reactions system, assuming k1, k2 are both
fast:

A
k1−−−−→ B, A

k2−−−−→ C. (20)

If one applies the method sketched above, one gets the following differential-
algebraic system:

Ȧ = −F1 − F2, Ḃ = F1, Ċ = F2, 0 = k1A, 0 = k2A (21)

which simplifies to the regular differential chain:

F1 = −Ċ, F2 = Ċ, Ḃ = −Ċ, A = 0. (22)

The normal form of Ḃ is −Ċ and Ċ is equal to its own normal form: the method
failed.

According to the Tikhonov theorem, there are some extra conditions to check
for the approximation to be valid [23, conditions C3 and C4]. In particular, the
slow variety defined by the algebraic equations must be attractive.

In some cases, there exists a better slow variety than the one provided by the
method. To compute a reduced system w.r.t. this different variety, one just needs
to change the set of algebraic equations of the differential-algebraic system and
to run the differential elimination process. Such a situation is illustrated by the
next example borrowed from [26] where k2 � k1:

A
k1−−−−→ B

k2−−−−→ ∅. (23)

If one applies the method, one gets the following differential-algebraic system:

Ȧ = −k1A, Ḃ = k1A− F1, 0 = k2 B (24)

which simplifies to the following regular differential chain:

F1 = k1A, Ȧ = −k1A, B = 0. (25)

However, the slow variety k1 A−k2B = 0 is better than B = 0. A better reduced
system is thus obtained by performing differential elimination over the following
differential-algebraic system:

Ȧ = −k1A, Ḃ = k1A− F1, 0 = k1 A− k2 B (26)

which simplifies to the following regular differential chain:

F1 = (k1 + k2)B, Ḃ = −k1B, A = k2
k1
B. (27)

32 F. Boulier and F. Lemaire

4 Application to System Modeling in Cellular Biology

This section aims at establishing some relationship between the quasi-steady
state approximation method sketched in section 3 and system modeling in cel-
lular biology. For this purpose, an application of this technique to the analysis
of a genetic regulatory circuit made of a single gene, regulated by a polymer of
its own protein [27,28] is described.

Pn

α

θ

ρf
ρb

δM

P

δP

M

G H

+

P

+
Pn

P

+
P

+
β

Pn−1

P2

Fig. 1. A single gene regulated by a polymer of its own protein

One considers the genetic circuit depicted in Figure 1. The single gene is reg-
ulated by an order n polymer of its own protein. The integer number n is a
parameter of the system. This study was motivated by the activity of a working
group aiming at modeling the circadian clock of the green alga ostreococcus tauri.
The addressed question was: does there exist biologically meaningful parameters
values which make this circuit oscillate? More technically: does there exist bio-
logically meaningful parameters values which make a Poincaré-Andronov-Hopf
bifurcation occur? One refers to [27] for a more detailed motivation of the ad-
dressed question and to [29] for a related work.

There are many different ways to derive a system of ordinary differential
equations from the considered circuit but one of the simplest schemes consists
in first translating it as a system of generalized chemical reactions (observe that
transcription and translation are not balanced reactions). The variablesG and H
represent the state of the gene. The mRNA concentration and the concentration
of the protein translated from the mRNA are represented by M and P . The n
types of polymers of P are denoted by P = P1, P2, . . . , Pn. Greek letters and
k−i , k

+
i (1 ≤ i ≤ n− 1) represent parameters:

Differential Algebra and System Modeling in Cellular Biology 33

G+ Pn

α−−−−→←−−−−
θ

H, G
ρf−−−−→ G+M, H

ρb−−−−→ H +M,

M
β−−−−→M + P, M

δM−−−−→ ∅, P
δP−−−−→ ∅,

Pi + P
k+

i−−−−→←−−−−
k−

i

Pi+1 (1 ≤ i ≤ n− 1).

(28)

This generalized chemical reactions system can now be canonically translated as
a system of parametric ordinary differential equations, denoting Ai = (k−i Pi+1−
k+

i Pi P). Variables G, H, M, P = P1, . . . , Pn are dependent variables. They all
represent species concentrations except G and H , which should rather be viewed
as “random variables”.

Ġ = θH − αGPn,

Ḣ = −θH + αGPn,

Ṁ = ρf G+ ρbH − δMM,

Ṗ = βM − δP P + 2A1 +A2 + · · ·+An−1,

Ṗi = −Ai−1 +Ai (2 ≤ i ≤ n− 1),
Ṗn = −An−1 + θH − αGPn.

(29)

This system of n + 3 differential equations depending on 2n + 5 parameters is
actually much too large for any further symbolic analysis. It needs to be reduced.

In order to apply a quasi-steady state approximation, it is assumed that
the n − 1 chemical reactions describing the polymerization of the protein are
fast compared to the other ones.

Then, according to the technique sketched in section 3, one gets an approx-
imation of system (29) by replacing each expression Ai by a new dependent
variable Fi (1 ≤ i ≤ n−1) and by augmenting this system by the n−1 following
algebraic equations:

0 = k+
i P Pi − k−i Pi+1, (1 ≤ i ≤ n− 1). (30)

It is now sufficient to eliminate the Fi from the so obtained differential-algebraic
system. Unfortunately, this cannot be performed by a standard differential elim-
ination algorithm since the number of equations depends on the parameter n.
However, such an algorithm can be applied for many different values of n and
the general formula can be inferred.

Ġ = θH − αKn−1 P
n G,

Ḣ = −θH + αKn−1 P
nG,

Ṁ = ρbH + ρf G− δMM,

Ṗ =
n θH − nαKn−1 P

n G− δP P + βM
n−1∑
i=0

(i+ 1)2Ki P
i

(31)

where Ki =
k+
1 · · · k+

i

k−1 · · · k−i
with the convention K0 = 1.

34 F. Boulier and F. Lemaire

The redundant equation describing the evolution of H can be removed and H
can be replaced by γ0 − G in the three remaining equations, where γ0 is some
new parameter denoting the total quantity of gene. Some further exact reduction
of the parameters set can moreover be performed and one is led to the three
parametric ODE model [28, system (3)].

This three parametric ODE reduced system is simple enough to be tackled
by the Hopf criterion (a variant of the Routh-Hurwitz one) and it was proven in
[27,28] that a Poincaré-Andronov-Hopf bifurcation occurs for biologically mean-
ingful values of the parameters if and only if n > 8. One refers to those papers
for a biological interpretation of this result.

Let us conclude this section by a few comments on the involved quasi-steady
state approximation methods. When [27] was written, its authors did not know
the particular way to perform the quasi-steady state approximation over an ODE
system derived from a generalized chemical reactions system. Thus they applied
a “handmade” technique inspired from the singular perturbation theory yielding
a three ODE model and “solved” it. Integral curves obtained by numerical inte-
gration showed differences between the initial and the reduced system but this
was expected. Later, the same authors understood the particular technique for
generalized chemical reactions system and showed how it is related to differen-
tial elimination [12]. This technique, applied over the very same system in [28],
produced (after a suitable change of coordinates) a slightly different reduced sys-
tem: one gets the old [27] reduced system by clearing the denominator of the last
ODE of system (31). By some reduction argument, the proof of the old paper
could be applied to the new model. This somehow confirmed that the handmade
reduction technique was good. However, comparisons of integral curves obtained
by numerical integration showed that the new model is more accurate, in the
sense that it has a wider domain of validity, than the old one.

5 Parameters Estimation

The problem which is addressed in this section can be stated as follows: given
a parametric ordinary differential system and files of measures for some of the
dependent variables, estimate the values of the unknown parameters. In this
context, differential elimination somehow transforms a nonlinear least squares
problem into a linear one by guessing a starting point for a Newton-like method.

The approach described in this section was published in [30,13]. It was imple-
mented in a software based on the BLAD libraries [31,14]. It is strongly related
to the study of the identifiability of parametric differential systems, for which a
huge literature is available [32,33,34,35,36].

To be honest, the method is not very convenient for system modeling in cel-
lular biology for it requires pretty precise model equations as well as pretty
accurate measures. In cellular biology, one usually does not know the model
equations though the situation might be better for in vitro systems or synthetic
genes. But accurate measures are definitely not available in 2008. However, we
chose to present the method anyway in this paper for two reasons: first, the use

Differential Algebra and System Modeling in Cellular Biology 35

of differential elimination always improves the classical numerical one; second,
the quasi-steady state approximation technique presented in section 3 suggests
another, new, improvement.

The content of this section owes a lot to [15] and one refers to this paper for
more detailed explanations.

The problem is stated by an academic example. Consider the following sys-
tem of parametric ordinary differential equations. There are two dependent vari-
ables x1, x2 and four parameters k12, k21, ke, Ve. It could be derived from a
chemical reactions system since it involves two linear exchanges and a Henri-
Michaelis-Menten degradation term.

ẋ1 = −k12 x1 + k21 x2 −
Ve x1

ke + x1
, ẋ2 = k12 x1 − k21 x2. (32)

Assume that x1 is observed i.e. that a file of measures is available for this de-
pendent variable but that x2 is not. For the sake of simplicity, assume moreover
that x2(0) = 0 and ke = 7 are known. Issue: estimate the values of the three
unknown parameters k12, k21, Ve.

There exists a purely numerical method to solve this problem. It is based
on a nonlinear least squares method i.e. a Newton method. The idea is simple:
pick random values for the three unknown parameters. Integrate numerically
the differential system w.r.t. these values and compare the curve obtained by
simulation with the file of measures. The error is defined as the sum, for all
abscissas, of the squares of the ordinates differences between the two curves. The
Newton method (a Levenberg-Marquardt scheme was applied in [14]) updates
the values of the three unknown parameters if the error is considered as too large.
It stops either if the error is small enough of if a stationary point is reached.
However, as every Newton method, nonlinear least squares are very sensitive to
the choice of the starting point (the initial random values) and are very likely
to end up in a local minimum, with wrong parameters values.

By means of differential elimination, it is sometimes possible to compute a first
estimate of the unknown parameters. This estimate is usually not very precise
but can be used as a starting point for the Newton method.

The idea consists in eliminating the non observed variables in order to get
a relation which only involves the observed variable x1, its derivatives up to
any order and the parameters. Let us proceed with the help of diffalg. The
Rosenfeld-Gröbner algorithm5 is applied over the model equations. The ranking
x2 � x1 eliminates x2 w.r.t. x1. The right-hand side of the first model equation
is a rational fraction. It is decomposed as a numerator and a denominator. The
numerator is stored in the list of the equations (first parameter to Rosenfeld-
Gröbner). The denominator is stored in the list of the inequations. To avoid
splitting cases on parameters values, one views them as algebraically independent
elements of the base field of the differential polynomials.
5 There are more efficient algorithms than Rosenfeld-Gröbner for performing this elim-

ination since the input system already is a characteristic set w.r.t. some orderly
ranking: one could apply a change of ranking algorithm [33,37] which would avoid
splitting cases.

36 F. Boulier and F. Lemaire

eq1 := diff (x1(t),t) + k12*x1(t) - k21*x2(t) + Ve*x1(t)/(ke + x1(t));

eq2 := diff (x2(t),t) - k12*x1(t) + k21*x2(t);

K := field_extension (transcendental_elements = [k21, k12, ke, Ve]):

R := differential_ring

(derivations = [t], notation = diff,

field_of_constants = K, ranking = [x2, x1]):

ideal := Rosenfeld_Groebner ([numer (eq1), eq2], [denom (eq1)], R);

ideal := [characterizable]

The characteristic set ideal involves two polynomials. The one which does not
involve x2 is the second one, which is displayed below, slightly pretty printed. The
expressions enclosed between square brackets are called “parameters blocks”.

ẍ1 (x1 + ke)2 + [k12 + k21] ẋ1 (x1 + ke)2 + [Ve] ẋ1 ke + [k21 Ve]x1 (x1 + ke) = 0.

This equation tells us that the systems parameters are in principle uniquely
defined. Indeed, assume that the function x1 is known. Then so are its derivatives
ẋ1 and ẍ1. These three functions can therefore be evaluated for three different
values of the time t. The known parameter ke can be replaced by its value.
One thereby gets an exactly determined system of three linear equations whose
unknowns are the parameters blocks. This system admits a unique solution. The
values of the parameters blocks being fixed, it is obvious (in this example!) that
the values of k12, k21 and Ve also are uniquely defined. QED.

In practice, the function x1 is known from a file of measures and one can try
to numerically estimate the values of its first and its second derivative. If the
measures are free of noise, the first derivative can be quite accurately estimated
but this is usually not the case for the second derivative. To overcome these
difficulties due to numerical approximations, one builds an overdetermined linear
system that one solves by means of linear least squares.

The values of the blocks of parameters being known, one still has to recover the
values of the parameters by solving the above algebraic system. In this example,
it is very easy. The obtained values can then be used as a starting point for
the Newton method. Observe that one cannot guarantee that this starting point
does actually lead to the global minimum.

There are however two more important difficulties to overcome.
There may exist algebraic relations between the parameters blocks. There is

no such relation in the example. But assume, for the sake of the explanation,
that the computed differential polynomial involves the three following blocks of
parameters so that the third block is the product of the two first ones:

[Ve], [k21], [Ve k21]. (33)

There is no doubt that the numerical values produced during the resolution of
the linear overdetermined system would not satisfy this relation. This would
imply that the final algebraic system to solve in order to get the values of the
parameters would be inconsistent.

Differential Algebra and System Modeling in Cellular Biology 37

The differential systems that the Newton method needs to numerically inte-
grate at runtime may become stiff, forcing the numerical integrators to choose
very small step sizes, thus slowing down the whole optimisation process. Indeed,
in these nonlinear fitting methods, the parameters are the variables. The sets of
large and small parameters have to change during the process and stiffness is
often caused by the presence of different time scales in the differential systems.

A promising idea would consist, in the context of systems evolving from general-
ized chemical reactions systems, in applying the quasi-steady state approximation
technique described in section 3. The differential system to be integrated could be
replaced by a reduced one. The error computation of the Newton method could
then be performed over the reduced system, speeding up the overall process.

6 Conclusion

As a conclusion, let us respond to a quotation of Eric Ponder (a director of
Long Island Biology Association), borrowed from [38, Postscript]: “work on the
mathematics [for biology] seems to me to have developed along two equally
unprofitable lines”.

The use of computer algebra methods for performing differential elimination
seems very promising for enhancing (at least) software for system modeling in
cellular biology. The recent progresses in the quasi-steady state approximation
theory suggest to widen the use of generalized chemical reactions systems and
make the simplification hypotheses more explicit which would otherwise justify
the use of Henri-Michaelis-Menten or Hill terms. Already available standalone
C libraries for differential elimination [31] should still simplify this evolution.

In turn, the search of applications in the field of system modeling in cellular
biology also led to improvements in differential algebra. It is this work which
pushed the authors to study the quasi-steady state approximation theory in the
context of generalized chemical reactions systems and which has also suggested
a new improvement of the nonlinear least squares methods.

Last, these works are far from over. For instance, an important theoretical
challenge consists in designing an algorithmic method for determining good slow
varieties of generalized chemical reactions systems. The authors are involved in
another, more concrete challenge: to develop a modeling software based on these
ideas and to use it to design and analyze synthetic gene networks.

References

1. Leloup, J.C., Goldbeter, A.: Modeling the molecular regulatory mechanism of cir-
cadian rhythms in Drosophila. Bioessays 22, 84–93 (2000)

2. Fall, C.P., Marland, E.S., Wagner, J.M., Tyson, J.J.: Computational Cell Biology.
Interdisciplinary Applied Mathematics, vol. 20. Springer, Heidelberg (2002)

3. Conrad, E.D., Tyson, J.J.: Modeling Molecular Interaction Networks with Nonlin-
ear Differential Equations. In: Szallasi, Z., Stelling, J., Periwal, V. (eds.) System
Modeling in Cellular Biology: From Concepts to Nuts and Bolts, pp. 97–124. The
MIT Press, Cambridge (2006)

38 F. Boulier and F. Lemaire

4. de Jong, H.: Modeling and Simulation of Genetic Regulatory Systems: A Literature
Review. Journal of Computational Biology 9(1), 67–103 (2002)

5. de Jong, H., Geiselmann, J., Hernandez, C., Page, M.: Genetic Network Analyzer:
qualitative simulation of genetic regulatory networks. Bioinformatics 19(3), 336–
344 (2003)

6. de Jong, H., Ropers, D.: Qualitative Approaches to the Analysis of Genetic Regu-
latory Networks. In: Szallasi, Z., Stelling, J., Periwal, V. (eds.) System Modeling in
Cellular Biology: From Concepts to Nuts and Bolts, pp. 125–147. The MIT Press,
Cambridge (2006)

7. Saka, Y., Smith, J.C.: A mechanism for the sharp transition of morphogen gradient
interpretation in Xenopus. BMC Dev. Biol. 7(47) (2007)

8. von Dassow, G., Meir, E., Munro, E.M., Odell, G.M.: The segment polarity network
is a robust developmental module. Nature 406, 188–192 (2000)

9. von Dassow, G., Meir, E.: Exploring modularity with dynamical models of gene
networks. In: Schlosser, G., Wagner, G.P. (eds.) Modularity in Development and
Evolution, pp. 245–287. University of Chicago Press (2003)

10. Horn, F., Jackson, R.: General mass action kinetics. Archive for Rational Mechanics
and Analysis 47, 81–116 (1972)

11. Okino, M.S., Mavrovouniotis, M.L.: Simplification of Mathematical Models of
Chemical Reaction Systems. Chemical Reviews 98(2), 391–408 (1998)

12. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.E.: Model Reduction of Chemical
Reaction Systems using Elimination. In: The international conference MACIS 2007
(2007), http://hal.archives-ouvertes.fr/hal-00184558

13. Denis-Vidal, L., Joly-Blanchard, G., Noiret, C.: System identifiability (symbolic
computation) and parameter estimation (numerical computation). Numerical Al-
gorithms 34, 282–292 (2003)

14. Boulier, F., Denis-Vidal, L., Henin, T., Lemaire, F.: LÉPISME. In: Proceedings of
the ICPSS conference (2004); Submitted to the Journal of Symbolic Computation,
http://hal.archives-ouvertes.fr/hal-00140368

15. Boulier, F.: Differential Elimination and Biological Modelling. Radon Series on
Computational and Applied Mathematics (Gröbner Bases in Symbolic Analysis),
vol. 2, pp. 111–139 (October 2007),
http://hal.archives-ouvertes.fr/hal-00139364

16. Ritt, J.F.: Differential Algebra. Dover Publications Inc, New York (1950),
http://www.ams.org/online bks/coll33

17. Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, New
York (1973)

18. Wang, D.: Elimination Practice: Software Tools and Applications. Imperial College
Press, London (2003)

19. Hairer, E., Wanner, G.: Solving ordinary differential equations II. Stiff and
Differential–Algebraic Problems, 2nd edn. Springer Series in Computational Math-
ematics, vol. 14. Springer, New York (1996)

20. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the radical
of a finitely generated differential ideal. In: ISSAC 1995: Proceedings of the 1995
international symposium on Symbolic and algebraic computation, pp. 158–166.
ACM Press, New York (1995), http://hal.archives-ouvertes.fr/hal-00138020

21. Boulier, F., Lemaire, F.: A computer scientist point of view on Hilbert’s differ-
ential theorem of zeros. Algebra in Engineering, Communication and Computing
(submitted, 2007), http://hal.archives-ouvertes.fr/hal-00170091

22. Kokotovic, P., Khalil, H.K., O’Reilly, J.: Singular Perturbation Methods in Control:
Analysis and Design. Classics in Applied Mathematics 25 (1999)

http://hal.archives-ouvertes.fr/hal-00184558
http://hal.archives-ouvertes.fr/hal-00140368
http://hal.archives-ouvertes.fr/hal-00139364
http://www.ams.org/online_bks/coll33
http://hal.archives-ouvertes.fr/hal-00138020
http://hal.archives-ouvertes.fr/hal-00170091

Differential Algebra and System Modeling in Cellular Biology 39

23. Van Breusegem, V., Bastin, G.: Reduced order dynamical modelling of reaction
systems: a singular perturbation approach. In: Proceedings of the 30th IEEE Con-
ference on Decision and Control, Brighton, England, pp. 1049–1054 (December
1991)

24. Vora, N., Daoutidis, P.: Nonlinear model reduction of chemical reaction systems.
AIChE Journal 47(10), 2320–2332 (2001)

25. Bennet, M.R., Volfson, D., Tsimring, L., Hasty, J.: Transient Dynamics of Genetic
Regulatory Networks. Biophysical Journal 92, 3501–3512 (2007)

26. Maquet, F.: Master Research training report. University Lille I (to appear, 2008)
27. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.E., Ürgüplü, A.: On proving the

absence of oscillations in models of genetic circuits. In: Anai, H., Horimoto, K.,
Kutsia, T. (eds.) Ab 2007. LNCS, vol. 4545, pp. 66–80. Springer, Heidelberg (2007),
http://hal.archives-ouvertes.fr/hal-00139667

28. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.E.: Applying a rigorous quasi-
steady state approximation method for proving the absence of oscillations in models
of genetic circuits. In: Algebraic Biology 2008 (submitted, 2008),
http://hal.archives-ouvertes.fr/hal-00213327

29. Niu, W., Wang, D.: Algebraic Approaches to Stability Analysis of Biological Sys-
tems. Mathematics in Computer Science 1, 507–539 (2008)

30. Noiret, C.: Utilisation du calcul formel pour l’identifiabilité de modèles
paramétriques et nouveaux algorithmes en estimation de paramètres. PhD the-
sis, Université de Technologie de Compiègne (2000)

31. Boulier, F.: The BLAD libraries (2004), http://www.lifl.fr/∼boulier/BLAD
32. Walter, É.: Identifiability of State Space Models. Lecture Notes in Biomathematics,

vol. 46. Springer, Heidelberg (1982)
33. Ollivier, F.: Le problème de l’identifiabilité structurelle globale : approche

théorique, méthodes effectives et bornes de complexité. PhD thesis, École Poly-
technique, Palaiseau, France (1990)

34. Diop, S., Fliess, M.: Nonlinear observability, identifiability, and persistent trajec-
tories. In: Proc. 30th CDC, Brighton, pp. 714–719 (1991)

35. Ljung, L., Glad, S.T.: On global identifiability for arbitrary model parametrisa-
tions. Automatica 30, 265–276 (1994)

36. Sedoglavic, A.: A Probabilistic Algorithm to Test Local Algebraic Observability in
Polynomial Time. Journal of Symb. Comp. 33(5), 735–755 (2002)

37. Boulier, F., Lemaire, F., Moreno Maza, M.: Computing differential characteristic
sets by change of ordering. Technical report, Université Lille I (2007); Submitted
to the Journal of Symbolic Computation,
http://hal.archives-ouvertes.fr/hal-00141095

38. Mishra, B.: Algebra, Automata, Algorithms & Beyond. Le Matematiche LXIII (1),
21–23 (2008)

http://hal.archives-ouvertes.fr/hal-00139667
http://hal.archives-ouvertes.fr/hal-00213327
http://www.lifl.fr/~boulier/BLAD
http://hal.archives-ouvertes.fr/hal-00141095

Hybrid Semantics for Stochastic π-Calculus

Luca Bortolussi1 and Alberto Policriti2

1 Dept. of Mathematics and Computer Science, University of Trieste, Italy
luca@dmi.units.it

2 Dept. of Mathematics and Computer Science, University of Udine,
and Applied Genomics Institute, Udine Italy

policriti@dimi.uniud.it

Abstract. We put forward a method to map stochastic π-calculus pro-
cesses in chemical ground form into hybrid automata, a class of dy-
namical systems with both discrete and continuous evolution. The key
ingredient is the separation of control and molecular terms, which turns
out to be related to the conservation properties of the system.

1 Introduction

Systems biology is a fertile research area in which experimental techniques are
coupled with mathematical modeling in order to understand the complex dy-
namics within cells [16]. In this context, both mathematical and computational
tools play an important role: biological systems must be described in a precise
mathematical framework, usually ordinary differential equations or stochastic
processes, and the obtained models must then be analyzed. However, due to their
intrinsic complexity, computational techniques like simulation must be used.

The contributions of Computer Science, on the other hand, are not just
restricted to the computational analysis of models, but also related to their
description by means of suitable formal languages, offering the features of com-
positionality and model reusability [19].

These languages usually belong to the domain of stochastic process algebras
(SPA), which have a semantics defined in terms of Continuous Time Markov
Chains [14,21]. Different SPA have been used in biological modeling; here we
recall stochastic π-calculus [18], PEPA [6], and stochastic Concurrent Constraint
Programming (sCCP, [5]). An important issue in using these languages is that
the resulting models are automatically interpreted as stochastic processes, hence
they can be simulated and analyzed using common techniques, like the celebrated
Gillespie’s algorithm [11]. Actually, when just biochemical reactions are involved,
the stochastic process defined by these SPA coincide with the canonical one, as
given by the chemical master equation [11,21]. In this approach, the system is
described microscopically, counting the number of molecules of each species.

Simulation of stochastic processes, however, can be computationally too de-
manding, especially when large populations of chemical species are present in the
system. In this case, a better strategy is that of using models based on ordinary
differential equations, approximating the number of molecules as a continuous

K. Horimoto et al. (Eds.): AB 2008, LNCS 5147, pp. 40–55, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Hybrid Semantics for Stochastic π-Calculus 41

quantity. In order to achieve this goal, PEPA, stochastic π-calculus, and sCCP
have been equipped with a semantics based on ODE’s [3,15,8].

This sort of approximation, however, is not appropriate for models having
small populations and for models containing inherently discrete entities like
genes (genes are usually present in a single copy in a cell, and they are nei-
ther produced nor degraded). Actually, there are several well-known examples
in which the stochastic model and its continuous approximation show a radi-
cally different behavior [11,2]. In order to deal with some of these cases, in [4]
we introduced a hybrid approximation for sCCP, in which some entities of the
system are kept discrete, while others are approximated as continuous. Essen-
tially, we defined a mapping from sCCP to hybrid automata, which are mixed
discrete/continuous dynamical systems. The separation between continuous and
discrete components in sCCP is quite natural. Each sCCP program consists of a
set of agents acting on shared variables. Each agent can have different internal
states, enabling different actions, while variables describe time-changing quanti-
ties. For instance, proteins are described by variables, while genes are modeled
as agents, with different internal states depending on which transcription factors
are bound to them (see [5] for further details). Therefore, the discrete dynamics
of the hybrid automata associated with an sCCP program comes from the dif-
ferent inner states of agents, while the continuous dynamics describes the time
evolution of sCCP variables. In [4] it is shown that the hybrid semantics of sCCP
is more adherent to the stochastic dynamics than the continuous one.

The purpose of this paper is to extend the method of [4] to stochastic
π-calculus. In this case, we do not have any a-priori distinction between dis-
crete agents and time-varying variables as in sCCP, hence we need to separate
π-agents into two groups, one amenable to continuous approximation and the
other inherently discrete. This distinction turns out to be related to conservation
properties of the system.

The paper is organized as follows: Section 2 recalls the syntax of a sub-
set of stochastic π-calculus that will be used in the following, while Section 3
briefly presents Hybrid Automata. The identification of discrete components of
π-calculus programs is tackled in Section 4, while Section 5 presents the mapping
to Hybrid Automata. Conclusions are drawn in Section 6.

2 Stochastic π-Calculus

We recall briefly the syntax of stochastic π-calculus processes in Chemical
Ground Form (CGF from now on), as defined in [7]. This is a restricted subset of
π-calculus (actually, of CCS), which is however sufficient to model biochemical
reactions and genetic networks. Essentially, the restriction operator is dropped
and no information is passed on channels during a communication. Parameter-
ized communication can however be introduced without substantially changing
the language, see [7] for further details.

Processes in CGF are defined by the grammar of Table 1. Essentially, a
π-calculus program in CGF consists of a set of reagents (agents/molecules)E and

42 L. Bortolussi and A. Policriti

Table 1. Syntax of stochastic π-calculus processes in Chemical Ground Form

E ::= 0|X = M, E
M ::= 0|π.P ⊕ M

P ::= 0|(X|P)
π ::= τ r|?xr|!xr

CGF ::= (E, P)

of the initial solution (network/configuration) P0.1 Each reagent is a summation
M , whose addends are guarded by actions, either silent (τr) or communications
on channels (inputs ?xr and outputs !xr). All actions are indexed by a parame-
ter r, which is the rate of an exponential distribution governing their execution
time. It is agreed that all occurrences of each channel have the same rate, so
that the function ρ, assigning to each distinct channel name and silent action its
rate, can be consistently defined.

Remark 1. The same channel name x can be used several times in the defini-
tion of reagents in E, so that different agent types can communicate on it. For
instance, consider X1 =!x.X1, X2 =?x.X2, X3 =!x.X3, and X4 =?x.X4. x gives
rise to 4 possible communications (X1 with X2 or X4 and X3with X2 or X4). In
general, if there are n occurrences of !xr and m occurrences of ?xr, then there
are mn possible interactions on channel x. Actually, an equivalent system can
be easily constructed where all possible communications have distinct names:
we can replace x with nm new channels xr

i,j , for i = 1, . . . , n and j = 1, . . . ,m,
substituting the ith occurrence of !xr.P with the sum !xr

i,1.P ⊕ . . .⊕!xr
i,m.P , and

the jth occurrence of ?xr with !xr
1,j .P ⊕ . . .⊕!xr

n,j .P . Note that this can cause
a quadratic explosion in the description of CGF (E,P), although it leaves the
dynamics unchanged.

From now on, we confine ourselves to programs in which each channel appears
once as input and once as output. In addition, we index all τ actions with a
different integer number, in such a way that τ actions are all distinct.

Example 1. We present here a very simple genetic regulatory network, consist-
ing of one single gene producing a protein that represses its own production.
For simplicity, we consider a model in which the gene generates directly the pro-
teins, without the intermediate step of mRNA production. This system can be
described by the following set of reactions:

G+ P →kb
Gb + P

Gb →ku G
G→kp G+ P
P →kd

∅,

(1)

where G is the gene, Gb is the repressed gene and P is the produced protein.
1 Each solution P can be compactly described by its “marking”, i.e. by counting the

number of copies of each agent X in parallel in P . This is sufficient to determine the
dynamics of the system.

Hybrid Semantics for Stochastic π-Calculus 43

Following the conversion rules from chemical reactions prescribed in [7], the
π-calculus program in CGF associated to (1) is defined as

G =?bkb .Gb ⊕ τkp
p .(G|P)

Gb = τku
u .G

P =!bkb .P ⊕ τkd

d .0
(2)

In this encoding, each molecule is represented as a distinct process, and its
action capabilities correspond to the different reactions of which the molecule is
a reactant. A full program requires also the specification of the initial state of
the system, which in this case consists of one single copy of G.

Associating ODE’s with π-calculus programs in CGF. Given a π-calculus pro-
gram (E,P0) in CGF, we can associate with it a set of ODE’s quite straight-
forwardly. Our presentation differs slightly from [7,8], in order to simplify the
following discussion.

First, we need some preliminary definitions. The function action(X) returns
the set of actions of the reactant X ; it can be extended to set of agents by
action({X1, X2}) = action(X1)∪ action(X2). For instance, action(P) = {b, τd},
where P is defined in (2), and action({P,Gb}) = {b, τd, τu}. Therefore, action(E)
is the set of actions of all agents defined in E. In addition, with #(X,P)
(#(X,B)) we denote the number of occurrences of the agent X in the solution
P (multiset B). Finally, with react(π) and prod(π) we indicate the multisets of
agents that are consumed and produced by π, respectively. For instance, if X =
!x.(X |X) and Y =?x.(Y |Y), then react(x) = �X,Y � and prod(x) = �X,X, Y, Y �.

The basic idea in associating ODE’s with a π-program is to approximate the
number of occurrences #(X,P) of an agent X in the solution P by a contin-
uous quantity, also indicated with X (X, instead, will denote the vector of all
variables X).

Definition 1. Let (E,P0) be a π-calculus program in CGF, A ⊆ E, and T ⊆
action(E).

1. The stoichiometric matrix SA,T w.r.t. A and T is a |A| × |T | matrix, with
rows indexed by agents of A and columns indexed by actions of T , defined
by SA,T [X,π] = #(X, prod(π)) −#(X, react(π)).

2. The rate vector φA,T w.r.t. A and T is a |T | vector defined by2

φA,T [π](X)

⎧⎪⎪⎨⎪⎪⎩
0, if react(π) ∩A = ∅;
ρ(π)X, if react(π) ∩A = �X�;
ρ(π)XY, if react(π) ∩A = �X,Y �;
ρ(π)X(X − 1), if react(π) ∩A = �X,X�.

2 The rate function for homodimeric reactions lacks a factor 1/2 w.r.t. the standard
definition. This happens because each homodimer X =!x.X⊕?x.X counts twice:
once for the input !x and once for the output ?x. This gives a factor two in the rate
function canceling out 1/2. Clearly, this must be taken into account while writing
models in π-calculus: rates of homodimeric reactions must be halved [7].

44 L. Bortolussi and A. Policriti

3. The ODE’s associated to (E,P0) are Ẋ = SE,action(E) ·φE,action(E)(X), with
initial conditions given by X(0) = #(X,P0).3

Consider again the program of Example 1. For T = action(E), we obtain:

SE,T =
(G)
(Gb)
(P)

�
�

−1 0 0 1
1 0 0 −1
0 1 −1 0

�
� φE,T =

�
���

ρ(b)GP
ρ(τp)G
ρ(τd)P
ρ(τu)Gb

�
���

��
�

Ġ = ρ(τu)Gb − ρ(b)GP

Ġb = ρ(b)GP − ρ(τu)Gb

Ṗ = ρ(τp)G − ρ(τd)P

In Figure 1 we compare a stochastic simulation of the π-calculus model (2)
with the numerical solution of the associated ODE’s. As we can readily see, the
two plots are different. In particular, in the stochastic simulation, P is produced
in bursts and it follows an irregular oscillatory pattern. The ODE’s system,
instead, presents a much simpler pattern of evolution, in which the quantity
of P converges to an asymptotic value. This divergence is caused by the fact
that, approximating continuously the state of the gene, we lose any information
on the discrete dynamics of gene’s activations and deactivations. As a matter
of fact, the same loss occurs when we consider the average trajectory of the
stochastic system. In fact, the average presents a trend more similar to that
of Figure 1(b) (data not shown), not conveying an adequate description of the
dynamics. Consider, for instance, an event triggered when the concentration of
P exceeds 100: this event would be activated infinitely often in the stochastic
system, but just once in the ODE-based one (or in the average trajectory).

Remark 2. In the mapping from π-calculus to ODE’s of Definition 1, the rates
of the stochastic processes and of the ODE’s are the same, in contrast with the
usual praxis in biochemistry, in which rates of ODE’s are redefined in terms
of concentrations. Indeed, the ODE’s that we defined must be thought of as
an approximation of the stochastic process, in the sense that they are a first-
order approximation of the differential equation for the average of the stochastic
system, cf. [1]. This relationship is similar to the one connecting deterministic
and stochastic mass action models of chemical reactions, cf. [10].

3 Hybrid Automata

In this section we briefly recall the ideas and the definition of hybrid automa-
ton. The reader is referred to [13] for an introductory survey. Hybrid automata
are dynamical systems presenting both discrete and continuous evolution. Es-
sentially, they are defined using a set of variables evolving continuously in time,
subject to instantaneous changes induced by the happening of discrete control
events. When discrete events happen the automaton enters its next mode, where
the laws governing the flow of continuous variables change. Formally, a hybrid
automaton is a tuple H = (V,E,X, f low, init, inv, jump, reset), where:
3 We could have defined the stoichiometric matrix and the rate vector just for the

sets E and action(E), instead of parameterizing them w.r.t. subsets A and T . This
parametric version, however, will turn out to be useful in Section 5.

Hybrid Semantics for Stochastic π-Calculus 45

(a) π-calculus model of system (1) (b) ODE model of system (1)

Fig. 1. (a) Simulation of the π-calculus model (2). The red line corresponds to P . Pa-
rameters of the models are the following: kp = 1, kb = 0.0001, ku = 0.0005, kd = 0.01.
The initial configuration consists in a single copy of G. (b) numerical simulation of
ODE’s associated to the π-calculus model (2), for the same parameters just given.
The evolution of P is different from the stochastic case, as it converges quickly to an
asymptotic value. Parameters have been assigned in order to correspond to a situa-
tion in which the binding/unbinding dynamics of the repressor P is very slow, when
compared to protein production and degradation. Increasing the binding and unbinding
strength smooths the behavior of the stochastic system, making it closer to Figure 1(b).
We refer the reader to [4] for a more biologically relevant example.

– X = {X1, . . . , Xn} is a finite set of real-valued variables (the time derivative
of Xj is denoted by Ẋj , while the value of Xj after a change of mode is
indicated by X ′

j).
– G = (V,E) is a finite labeled graph, called control graph. Vertices v ∈ V

are the (control) modes, while edges e ∈ E are called (control) switches and
model the happening of a discrete event.

– Associated with each vertex v ∈ V there is a set of ordinary differential equa-
tions4 Ẋ = flow(v) (referred to as the flow conditions). Moreover, init(v)
and inv(v) are two formulae on X specifying the admissible initial conditions
and some invariant conditions that must be true during the continuous evo-
lution of variables in v (forcing a change of mode to happen when violated).

– Edges e ∈ E of the control graph are labeled by jump(e), a formula on X
stating for what values of variables each transition is active (the so called
activation region), and by reset(e), a formula on X∪X′ specifying the change
of the variables’ values after the transition has taken place.

The traces of the system are defined as the time traces of the continuous
variables. Notice that the activation conditions are in general non-deterministic
(as well as resets), hence there can be different traces starting from the same
initial values. In this paper we are concerned mainly with simulation of hybrid
automata, i.e. with the generation of a set of admissible traces.
4 Other forms of flow specification are possible (differential inclusions, first order for-

mulae, etc.) but sets of differential equations are sufficient for our purposes here.

46 L. Bortolussi and A. Policriti

In the following, we will need a product construction for HA, which is almost
the classical one [13], the only difference being the treatment of fluxes for vari-
ables shared among the factors. In our case, in fact, fluxes are added. Before
giving the formal definition of this flux product, we put forward some notation.
The product G = G1 × G2 of two graphs G1 = (V1, E1) and G2 = (V2, E2) has
vertex set V1 × V2 and edges of the form ((v1, w), (v2, w)), where (v1, v2) ∈ E1,
or ((v, w1), (v, w2)), where (w1, w2) ∈ E2. Given an edge e ∈ E, the projection
π1(e) is defined for all edges e = ((v1, w), (v2, w)), and is the edge (v1, v2) ∈ E1.
Projection π2 can be defined symmetrically.

Definition 2. Let H1 =(V1, E1,X1, f low1, init1, inv1, jump1, reset1) and H2 =
(V2, E2,X2, f low2, init2, inv2, jump2, reset2). The flux product of H1 and H2 is
the hybrid automatonH1⊗H2 = (V,E,X, f low, init, inv, jump, reset)defined by:

1. (V,E) = (V1, E1)× (V2, E2);
2. X = X1 ∪X2;
3. flow((v1, v2)) �X= flow1(v1) �X +flow2(v2) �X, if X ∈ X1 ∩X2. Other-

wise, if X ∈ Xi, then flow((v1, v2)) �X= flowi(vi) �X;
4. init((v1, v2)) = init1(v1)∧ init2(v2) and inv((v1, v2)) = inv1(v1) ∧ inv2(v2);
5. jump(e) = jump1(e1), if e ∈ E is such that π1(e) = e1, otherwise, if π2(e) =

e2, then jump(e) = jump2(e2);
6. reset(e) = reset1(e1) if π1(e) = e1, while reset(e) = reset2(e2) if π2(e) = e2.

4 Control Automata

The reactants E of a π-calculus program (E,P0) in CGF can be broadly sep-
arated into two classes, one comprising all those terms which will change in
quantity during the evolution (essentially, molecules) and the other containing
a collection of terms defining a control structure, in such a way that exactly
one term of the collection is active in every solution P reachable from P0. For
instance, consider the model of the gene of Example 1. The gene G has two mu-
tually exclusive states: the normal form G and the repressed form Gb. Obviously,
we always have a single occurrence of the gene in the system, which can be in
one of the two states G and Gb. Essentially, we can think of a gene as a kind of
“logical” entity, whose activity depends on its inner state and whose state may
change due to interactions with the system.

We want now to find suitable conditions to define collections of terms behaving
like the gene in the example, which will be called in the rest of the paper control
automata (CA), because they can be thought of as automata present in a single
copy and synchronizing with the rest of the system. Let R be a CA. First, as
the reagents Xi ∈ R represent different inner states of the CA, there should not
be any inner communication between two of them:

∀X ∈ R, ∀π ∈ action(X), react(π) = �X,Y �⇒ Y �∈ R. (3)

In addition, any action involving X ∈ R (call it an R-state) can change the
state, but in any case it cannot destroy nor create more than one R-state in the
current solution. Hence R must satisfy:

Hybrid Semantics for Stochastic π-Calculus 47

∀X ∈ R, ∀π ∈ action(X), ∃!Y ∈ R : Y ∈ prod(π). (4)

A further condition that must be satisfied, is that only actions involving one
component of R may change its state:

∀π ∈ action(E), react(π) ∩R = ∅ ⇒ prod(π) ∩R = ∅. (5)

The final request on R is that in the initial configuration P0 of CGF, exactly
one state of R is present in P0 (we indicate #(X,P0) with #0(X)):

#0(R) =
∑
X∈R

#0(X) = 1. (6)

Collecting all the previous conditions together, we are ready to define a control
automaton:

Definition 3. Let (E,P0) be a π-calculus program in CGF. A subset R ⊆ E is
a control automaton if and only if it satisfies properties (3), (4), (5), (6).

A minimal control automaton R is a CA such that no proper subset of R is
a CA. C(E) denotes the set of all minimal CA of E.

The conditions satisfied by CA imply that the number of occurrences of elements
of R in the system remains constant during each possible computation, in fact
equal to one. Formally, we define

Definition 4. A set R ⊆ E of reagents is conserved iff #(R,P) = #(R,P ′),
for every pair of solutions P, P ′ such that P π→ P ′ (i.e. P can be transformed
into P ′ by the action π), where #(R,P) =

∑
X∈R #(X,P).

Theorem 1. R ⊆ E is a CA ⇒ R is conserved.

Proof. Let P, P ′ be two configurations such that P π→ P ′. Clearly, the following
relation holds:

#(R,P ′) = #(R,P)−#(R, react(π)) + #(R, prod(π)). (7)

If react(π)∩R = ∅, condition (5) implies that prod(π)∩R = ∅, hence #(R,P ′) =
#(R,P) by equation (7). Otherwise, condition (3) implies that #(R, react(π)) =
1, while condition (4) states that #(R, prod(π)) = 1, hence #(R,P ′) = #(R,P)
again by equation (7). �

Corollary 1. If R ⊆ E is a CA, then, for each configuration P reachable from
P0, #(R,P) = 1. �

The previous theorems state that control automata are indeed entities with
different states, one of which only is active at each stage of the evolution of
the system: control automata are neither produced nor degraded. This results
in a conservation law, in which the sum of the quantity of internal states of the
automata always equals one. Conservation laws allow us to use linear algebra to
characterize set of conserved states, as we will show in the following.

48 L. Bortolussi and A. Policriti

Before that, we observe that the previous theorem cannot be reversed. Con-
sider this simple system:

X = τ1.Y⊕!x.X Y = τ2.X⊕?x.Y,

where X can change state into Y and viceversa, due to a silent action. Moreover,
X and Y can synchronize on channel x, a condition violating property (3). Note
that all actions τ1, τ2, x maintain constant the quantity #(X,P)+#(Y, P). If no
other action of the system can create or destroy copies of X and Y , clearly R =
{X,Y } is conserved. R, however, is not a CA, as it fails to satisfy properties (3)
and (4). If the starting configuration of the system is such that #0(R) = 1, then
no communication on x will ever be possible, as we will never have a pair of X,Y
agents ready to communicate. In this case, we may remove the branch !x.X from
X and the branch ?x.Y on Y without altering the behavior of the system. The
resulting agents X ′ and Y ′ are now CA. This justifies the following definition:

Definition 5. Let R ⊆ E. The reduced form R of R is obtained by removing all
occurrences of channels x such that react(x) ∩R = {X,Y }.

We can now prove the following:

Theorem 2. If R ⊆ E is conserved and #0(R) = 1, then the reduced form R
of R is a control automaton.

Proof. If R is conserved, then for every action π ∈ A

#(R, react(π)) = #(R, prod(π)) (8)

From this equation, property (5) follows immediately. In addition, property (4)
holds for all π such that #(R, react(π)) = 1. If no π ∈ action(E) is such that
#(R, react(π)) = 2, then the set R is a CA. Otherwise, it becomes a CA af-
ter removing all π ∈ action(E) is such that #(R, react(π)) = 2, i.e. all inner
communications in R. The resulting set is exactly the reduced form R of R. �
Theorems 1 and 2 give us a criterion to separate terms belonging to Control
Automata (i.e. agents exerting a control activity in the system) from agents
whose number changes over time. In fact, we need to identify collections R of
reagents that are conserved in the evolution of the system, whose initial quantity
is #0(R) = 1.

Remark 3. The characterization of CA as conserved sets has been suggested to
us by the study of conservation properties of Petri Nets [21]. As a matter of
fact, it is possible to define a mapping of stochastic π-calculus in CGF to Petri
Nets and reason on the latter. However, working directly with π-calculus is more
intuitive in this context.

Theorem 3. Let (E,P0) be a π-calculus program in CGF. A set R is conserved
iff the vector yR on E, equal to 1 for X ∈ R and to 0 otherwise, belongs to the
null space of the matrix A = ST

E,action(E).

Hybrid Semantics for Stochastic π-Calculus 49

Proof. Let r be a non-negative vector indexed by action(E). If r represents
the set of actions happening in a solution P with multiplicity of each term
given by a vector x on E (i.e. xi = #(Xi, P)), then the configuration after
the happening of r has multiplicity x′ = x + SE,action(E)r (remember that the
stoichiometric matrix SE,action(E) gives the net variation of each reagent in E
after the happening of each action of action(E)). Suppose now AyR = 0, and x,
x′ are such that x′ = x + SE,action(E)r for some r. The number of reagents of R
in x is given by

∑
yR[X]=1 x[X] = yT

Rx. The net variation of R after r is

yT
Rx− yT

Rx′ = yT
R(x − x′) = yT

R(SE,action(E)r) = (AyR)T r = 0,

hence R is conserved. Viceversa, if R is conserved, then (AyR)T r = 0 for all r,
hence AyR = 0. �
The previous property gives a clear way to identify Control Automata. All we
have to do is find all conserved sets R, i.e. vector of the null space of A whose
entries are either zero or one, whose initial value in P0 is one. Essentially, we have
to solve a zero-one integer programming problem under the constraints Ay = 0
and

∑
X∈E #0(X)y[X] = 1.

Suppose now we have solved this problem and collected the set of solu-
tions. In this way, we have identified all the candidates to be control automata.
Some of them satisfy Definition 4 only after removing inner communications
that cannot fire, hence they are CA contingent on the initial conditions. Ac-
cepting them as proper CA would make the construction of the next section
dependent on initial conditions. To avoid this, we simply remove these pseudo-
CA from the solution set. Formally, let yR be the 0-1 E-vector that is equal
to 1 for agents in R and 0 elsewhere; we consider the set R(E) = {R ⊆
E | A · yR = 0 ∧

∑
X∈R #0(X) = 1} and remove the pseudo-CA obtaining

R−(E) = {R ∈ R(E) | ∀π ∈ action(E),#(R, react(π)) ≤ 1}. This new set has
some nice closure properties:

Proposition 1. Let R,R1, R2 ∈ R−(E) such that R1 ⊂ R and R2 ⊂ R. Then
R1 ∩R2 �= ∅ and R1 ∩R2 ∈ R−(E). �

This allows to define consistently the minimal representative µE(R) of a CA
R ∈ R−(E) as the intersection of all subsets contained in R:

µE(R) =
⋂

R′∈R−(E),R′⊆R

R′.

Proposition 1 implies that µE(R) ∈ R−(E), hence the set of minimal CA
RM (E) = {µE(R) | R ∈ R−(E)} is a subset of R−(E). Actually, RM (E) is
precisely the set we are interested in, according to the following theorem.

Theorem 4. Let (E,P0) be in CGF. Then, C(E) = RM (E). �

Let’s go back to our running example. In this case, the stoichiometric matrix is
equal to

50 L. Bortolussi and A. Policriti

SE,action(E) =
(G)
(Gb)
(P)

⎛⎝−1 0 0 1
1 0 0 −1
−1 1 −1 0

⎞⎠
and the initial state of the system consists only of one copy of G. It is immediate
to verify that the only solution to ST

E,actionEy = 0 and y[G] = 1 is y = (1, 1, 0),
corresponding to the CA R = {G,Gb}. This is exactly the set of inner states of
the gene, in agreement with the intuitions at the beginning of this section.

Consider now the following π-program: X = τ.(X1|X2), X1 =!x.Y1, X2 =
?x.Y2, Y1 = τ1.X1, Y2 = τ2.X2. It holds that RM = {R1, R2}, with R1 =
{X,X1, Y1} and R2 = {X,X2, Y2}. However, these sets are not disjoint, in con-
trast with the intuition of control automata as distinct objects. Actually, R1

and R2 can be “separated” simply replacing X with X1
0 |X2

0 , X1
0 =!z.X1 and

X2
0 =?z.X2, where ρ(z) = ρ(τ), an operation not altering the dynamics. Al-

though now R1 = {X1
0 , X1, Y1} and R2 = {X2

0 , X2, Y2} are disjoint, their evo-
lution is still entangled, as they need to synchronize on z to evolve. In order to
keep the mapping to HA simple, we suppose in the following that the set C(E)
of minimal CA of E satisfy the following two conditions:

Definition 6. Let (E,P0) be a π-calculus program in CGF with control au-
tomata C(E).

1. C(E) is independent iff for all R1, R2 ∈ C(E), R1 ∩R2 = ∅.
2. C(E) is non-interacting iff no two CA of C(E) can synchronize on an action

π ∈ action(E), i.e. there does not exist R1, R2 ∈ C(E), π ∈ action(E) such
that react(π) ∩R1 �= ∅ ∧ react(π) ∩R2 �= ∅.

Remark 4. The problem of finding if a 0-1 integer programming problem has
a feasible solution is known to be NP-complete [9]. This makes the use of the
method defined above potentially troublesome in terms of computational cost.
In addition, there is no a-priori bound on the size of the set of solutions R(E)
that needs to be processed to obtain RM (E). Therefore, we need to study the
complexity of the problem of determining the set of minimal CA, giving, if
possible, more refined algorithms. We leave further investigation of these issues
for the future.

5 From π-Calculus to Hybrid Automata

In order to map a π-calculus program (E,P0) into CGF to a Hybrid Automaton
(HA), we process independently each minimal Control Automaton R of (E,P0),
associating a HA to R. Then, these HA are combined together using the flux
product construction of Definition 2. In the following, we suppose that (E,P0)
has independent and non-interacting CA (cf. Definition 6).

Before giving the details of the mapping, we need to fix some preliminary
notation. Let R ∈ C(E) be a CA of E. The set of discrete actions of R is
Td(R) = {π ∈ action(E) | react(π)∩R �= ∅∧react(π)∩prod(π)∩R = ∅}, i.e. the
set of actions changing the state of R. Similarly, the set of continuous actions of

Hybrid Semantics for Stochastic π-Calculus 51

R is Tc(R) = {π ∈ action(E) | react(π)∩prod(π)∩R �= ∅}, i.e. the set of actions
looping on a state of R. Given an action π ∈ Td(R)∪ Tc(R), its starting state is
start(π,R) = X iff react(π)∩R = {X}. Similarly, if prod(π)∩R = {Y }, then the
ending state of π is end(π,R) = Y . With Td(R,X) = {π ∈ Td(R) | start(π,R) =
X} we indicate the subset of discrete transitions of R starting at X ; a similar
definition applies to Tc(R,X). The set TC of uncontrolled continuous actions
is TC = action(E) \

⋃
R∈RM (E)(Td(R) ∪ Tc(R)). Finally, the continuous terms

of (E,P0) are those not belonging to a CA, i.e. Cont(E) = {X ∈ E | X �∈⋃
R∈C(E)R}.
Consider now a CA R ∈ C(E). The HA associated to R will be H(R) =

(V (R), E(R),X, f low, init, inv, jump, reset). We discuss how to define its com-
ponents separately.

Control Graph. The discrete modes V (R) of the HA are simply the different
elements of the CA R, i.e. V (R) = {σX | X ∈ R} . The edges of the control
graph are those implied by the discrete transitions Td(R): for π ∈ Td(R), we add
the edge (start(π,R), end(π,R)).

Continuous Flow. The (continuous) variables X of the system are one for each
term in Cont(E). These variables, in a state σX ∈ V (R), are subject only to the
effect of continuous transitions Tc(R,X). The idea to define their continuous flow
is simply to restrict the method of Definition 1 to transitions Tc(R,X) for each
X in R. Essentially, we define the local stoichiometric matrix SCont(E),Tc(R,X)

and the local rate vector φCont(E),Tc(R,X) according to Definition 1, and we
set flow(σX) = SCont(E),Tc(R,X) · φCont(E),Tc(R,X)(X). Note that, according to
Definition 1, φCont(E),Tc(R,X) depends only on the variables in Cont(E).

The invariant conditions are not needed in our mapping, hence inv(σX) =
true, while initial conditions are defined according to the initial configuration
P0 of (E,P0): if #0(X) = 0, then init(σX) := false , while if #0(X) = 1 then
init(σX) :=

∧
Y ∈Cont(E) (Y = #0(Y)).

Discrete Transitions. The most delicate part of the mapping is the definition
of the activation conditions and of the resets of discrete transitions. The point
is that in the stochastic process associated to (E,P0), transitions of Td(R) are
stochastic, with execution time exponentially distributed according to their rate.
This stochastic duration needs to be removed taking into account the timing of
the corresponding event. The simplest possibility is that of firing the transition at
its expected time. There is however a complication given by the fact that the rate
of the transition can depend on some terms that are approximated as continu-
ous. The associated stochastic process is, therefore, a non-homogeneous Poisson
process [20] with time-dependent rate φCont(E),action(E)[π](X(t)) = φπ(X(t)). In
this case, given the cumulative rate at time t, Λ(t) =

∫ t

0
φπ(X(s))ds, the proba-

bility of firing within time t is F (t) = 1− e−Λ(t). The expected value of Λ(T) at
the time T of firing is E[Λ(T)] = 1 (cf. [4,20]). Hence, we can fire the transition
whenever Λ(t) ≥ 1. In order to describe this condition within HA framework, we
introduce a new (clock) variable Zπ, with initial value 0, evolving according to

52 L. Bortolussi and A. Policriti

the equation Żπ = φπ(X). When the transition fires, we reset all variables Zπ

to zero, due to memoryless property of CTMCs.
The jump predicate can thus be defined as follows. If π ∈ Td(R,X) is such

that react(π) = {X}, then jump(π) := Zπ ≥ 1. Else, if react(π) = {X,Y }, then
jump(π) := Zπ ≥ 1 ∧ Y ≥ 1. The fact that CA are non-interacting guarantees
that Y ∈ Cont(E). Moreover, each discrete transition will be urgent, meaning
that it will fire as soon as its guard becomes true.

Resets of discrete transitions need to take into account the modifications in-
duced on continuous variables. Moreover, they need to set to zero variables Zπ.
Hence, for π ∈ Td(R,X), we set reset(π) :=

∧
Y ∈Cont(E)(Y

′ = Y +#(Y, prod(π))
−#(Y, react(π))) ∧

∧
π1∈Td(R)(Z

′
π1

= 0).
We collect now the previous discussion into a formal definition.

Definition 7. Let R ∈ C(E) be a CA of a π-calculus program (E,P0) in CGF.
H(R) = (V (R), E(R),W, f low, init, inv, jump, reset), the Hybrid Automaton
associated to R, is defined by:

1. V (R) = {σX | X ∈ R} and E(R) = {(start(π,R), end(π,R)) | π ∈ Td(R)};
2. W = X ∪ Z, where X is the vector of variables on Cont(E) and Z =
{Zπ | π ∈ Td(R)};

3. for each σX ∈ V (R), flow(σX)[Y] := SCont(E),Tc(R,X)[Y, ·]φCont(E),Tc(R,X)

for Y ∈ X and flow(σX)[Zπ] := φCont(E),action(E)[π] for Zπ ∈ Z;
4. for each σX ∈ V (R), inv(σX) := true;
5. for each σX ∈ V (R), init(σX) := false if #0(X) = 0 and init(σX) :=∧

Y ∈Cont(E)(Y = #0(Y)) ∧
∧

π∈Td(R)(Zπ = 0) if #0(X) = 1;
6. for each π ∈ Td(R), jump(π) := (Zπ ≥ 1) ∧

∧
Y ∈react(π)∩Cont(E)(Y ≥ 1);

7. for each π ∈ Td(R), reset(π) :=
∧

Y ∈Cont(E)(Y
′ = Y + #(Y, prod(π)) −

#(Y, react(π))) ∧
∧

π1∈Td(R)(Z
′
π1

= 0).

The previous definition gives us the recipe to associate an hybrid automaton
to each control automaton of a π-calculus program. However, there are some
actions that are not taken into account up to now, namely those belonging to
the set of uncontrolled continuous actions TC . In order to take into account their
effect, we define a special hybrid automaton with one single state.

Definition 8. Let (E,P0) be a π-calculus program in CGF and TC the set of
uncontrolled continuous transitions. The Hybrid Automaton H(TC) associated to
TC is H(TC) = (V,E,X, f low, init, inv, jump, reset), where V = {σ}, E = ∅,
jump := false, reset := false, inv(σ) := true, init(σ) :=

∧
X∈Cont(E)X =

#0(X), and flow(σ) := SCont(E),TC
φCont(E),TC

(X), where X is the vector of
variables on Cont(E).

We are finally ready to define the HA associated to the whole π-program: we
simply need to take the flux product of the HA coming from the different CA of
C(E) and of the HA coming from uncontrolled actions.

Hybrid Semantics for Stochastic π-Calculus 53

Definition 9. Let (E,P0) be a π-calculus program in CGF with a non-interacting
and independent C(E) of CA. The Hybrid AutomatonH(E) associated to (E,P0) is

H(E) = H(TC)⊗
⊗

R∈C(E)

H(R).

Consider again the simple autoregulatory gene network of Example 1. According
to the computation at the end of Section 4, the system has one control automata,
namely R = {G,Gb}, and one continuous term P . The Hybrid Automata H(R)
and H(TC) are shown in Figure 2, together with their product H(E). We can
see that the final HA has three continuous variables, one corresponding to P
and the other two, Zb, Zτu, associated to the discrete edges Td(R) = {b, τu}.
We can also see how the final vector field for P is the sum of the vector fields
for P of the two factors. In Figure 3, we show a simulation of H(E) for the
same parameters as in Figure 1. As we can see, the dynamics of the hybrid
automaton resembles very closely the behavior of the stochastic system rather
than the one of the ODE’s, preserving alternating spikes. Hence, keeping part of
the discreteness of the original system was enough to maintain qualitatively the
oscillatory pattern of Figure 1(a). We stress the fact that the correspondence

Fig. 2. Hybrid Automata obtained for the π-calculus process of Example 1

Fig. 3. Simulation of the Hybrid Automaton of Figure 2, for the same parameters as
in Figure 1

54 L. Bortolussi and A. Policriti

between the plots of Figures 1(a) and 3 is only partially quantitative. For in-
stance, in both the stochastic and the hybrid model P overcomes the threshold
of 100 infinitely often. As a matter of fact, the noise of the stochastic systems
perturbs dramatically the period of oscillations, which is highly regular in the
hybrid system, due to the urgent policy for transitions. In [4] we suggested the
use of non-determinism to reintroduce a certain degree of variability.

Remark 5. In the definition of the mapping, we assumed that C(E) is indepen-
dent and non-interacting. The choice of independence, i.e. of having disjoint
minimal CA, is fundamental in order to use the flux product construction. Non-
interactivity, instead, can be dropped by introducing a product of HA that allows
synchronization of discrete transitions. However, we did not follow this direction
here, to keep the presentation simpler.

6 Conclusions

In this paper we provided a restricted form of stochastic π-calculus, the so called
Chemical Ground Form [7], with a semantics based on hybrid automata. The
most difficult aspect is the identification, without the availability of external
knowledge, of portions of a π-calculus program acting as discrete controlling
components. This is necessary to define the discrete skeleton of the HA and it is
related to conservation laws of the system.

We argued that the hybrid semantics is more appropriate to reproduce quali-
tatively the stochastic behavior of the simple genetic network of Example 1. The
same observation seems to apply to a broad class of genetic circuits, cf. [4] for
further details.

Comparing qualitatively the dynamical evolution of systems described with
different mathematical formalisms is itself an intriguing problem. We believe
that a reasonable choice can be based on a temporal logic to describe dynamical
properties, thus equating behavioral equivalence with equi-satisfiability.

As a matter of fact, Hybrid Automata may be used also to tackle the discrete-
ness given by molecules present in small quantities in the system. The idea is
roughly that of separating actions into two groups, those amenable of continu-
ous approximation and those to be kept discrete. Different partitions correspond
to different HA, de facto associating to each π-calculus model a lattice of HA,
differing in the degree of discreteness. Dynamic partition schemes can be con-
sidered as well. This approach will result in a flexible hybrid semantics, capable
of dealing effectively with size effects and multi-scale systems. Another impor-
tant issue consists in stating a clear connection between our hybrid semantics
and standard models of biochemical networks, like the chemical master equa-
tion (CME) or mass action ODEs. A possibility in this sense is to manipulate
the CME similarly to [12], where authors formally justify hybrid simulation
schemes mixing stochastic differential equations with discrete jump Markov pro-
cesses. However, the advantage of our hybrid semantics with respect to hybrid

Hybrid Semantics for Stochastic π-Calculus 55

simulation strategies like [17,12] is that HA offer a powerful and flexible frame-
work both for simulation and for verification, computationally more efficient
than stochastic processes.

References

1. Bortolussi, L.: A master equation approach to differential approximations of
stochastic concurrent constraint programming. In: Proceedings of QAPL 2008
(2008)

2. Bortolussi, L., Policriti, A.: Dynamical systems and stochastic programming I -
ordinary differential equations. Trans. of Comp. Sys. Bio. (submitted, 2008)

3. Bortolussi, L., Policriti, A.: Stochastic concurrent constraint programming and
differential equations. In: Proceedings of QAPL 2007. ENTCS, vol. 16713 (2007)

4. Bortolussi, L., Policriti, A.: Hybrid approximation of stochastic concurrent con-
straint programming. In: Proceedings of IFAC 2008 (2008)

5. Bortolussi, L., Policriti, A.: Modeling biological systems in concurrent constraint
programming. Constraints 13(1) (2008)

6. Calder, M., Gilmore, S., Hillston, J.: Modelling the influence of RKIP on the ERK
signalling pathway using the stochastic process algebra PEPA. Trans. of Comp.
Sys. Bio. 4230, 1–23 (2006)

7. Cardelli, L.: From processes to ODEs by chemistry (2006),
http://lucacardelli.name/

8. Cardelli, L.: On process rate semantics. In: TCS (2007)
9. Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Therory

of NP-Completeness. Freeman, New York (1979)
10. Gillespie, D.: The Chemical Langevin Equation. Jo. of Chem. Phys. 113(1), 297–

306 (2000)
11. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. of

Phys. Chem. 81(25) (1977)
12. Haseltine, E.L., Rawlings, J.B.: On the origins of approximations for stochastic

chemical kinetics. J. Chem. Phys. 123 (2005)
13. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of LICS 1996

(1996)
14. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge

University Press, Cambridge (1996)
15. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of QEST

2005 (2005)
16. Kitano, H.: Computational systems biology. Nature 420, 206–210 (2002)
17. Neogi, N.A.: Dynamic partitioning of large discrete event biological systems for hy-

brid simulation and analysis. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS,
vol. 2993, pp. 463–476. Springer, Heidelberg (2004)

18. Priami, C., Quaglia, P.: Modelling the dynamics of biosystems. Briefings in Bioin-
formatics 5(3), 259–269 (2004)

19. Regev, A., Shapiro, E.: Cellular abstractions: Cells as computation. Nature 419
(2002)

20. Ross, S.M.: Stochastic Processes. Wiley, New York (1996)
21. Wilkinson, D.J.: Stochastic Modelling for Systems Biology. Chapman & Hall, Boca

Raton (2006)

http://lucacardelli.name/

Applying a Rigorous Quasi-Steady State

Approximation Method for Proving the Absence
of Oscillations in Models of Genetic Circuits

François Boulier1, Marc Lefranc2, François Lemaire1,
and Pierre-Emmanuel Morant2

1 University Lille I, LIFL, 59655 Villeneuve d’Ascq, France
{Francois.Boulier,Francois.Lemaire}@lifl.fr

http://www.lifl.fr/~{boulier,lemaire}
2 University Lille I, PHLAM, 59655 Villeneuve d’Ascq, France
Marc.Lefranc@univ-lille1.fr, morant@phlam.univ-lille1.fr

http://www-phlam.univ-lille1.fr/perso/lefranc

Abstract. In this paper, we apply a rigorous quasi-steady state approx-
imation method on a family of models describing a gene regulated by a
polymer of its own protein. We study the absence of oscillations for this
family of models and prove that Poincaré-Andronov-Hopf bifurcations
arise if and only if the number of polymerizations is greater than 8. A
result presented in a former paper at Algebraic Biology 2007 is thereby
generalized. The rigorous method is illustrated over the basic enzymatic
reaction.

1 Introduction

In a former paper [1], we studied a simple family of models depending on an
integer parameter n and featuring a negative feedback loop, one of the core in-
gredients for generating oscillations [2]. These abstract models are closely related
to models studied by Goodwin and Griffith in the 60’s [3,4,5]. Griffith consid-
ered a model of a gene regulated by a polymer formed of n copies of its own
protein. We studied the same problem, but in a slightly more general case, where
gene activation is not assumed to be fast. We eventually concluded with the ab-
sence of Poincaré-Andronov-Hopf bifurcation in our family of models for n ≤ 8
and their existence for n ≥ 9. The absence/presence of Poincaré-Andronov-Hopf
bifurcation for n ≤ 8 is a strong indicator for the absence/presence of oscillat-
ing trajectories. Extensive numerical experiments [6,7] confirmed the absence of
oscillations for n ≤ 8 and their existence for n ≥ 9.

In this paper, the models are designed by means of systems of parametric
nonlinear ordinary differential equations (ODE) [8]. The approach applied in [1]
consisted in two steps: first simplifying the initial system of n + 2 parametric
ordinary differential equations as a reduced system of three ODE by means of a
quasi-steady state approximation; second, studying the reduced model.

K. Horimoto et al. (Eds.): AB 2008, LNCS 5147, pp. 56–64, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Applying a Rigorous Quasi-Steady State Approximation Method 57

The idea of quasi-steady state approximation is simple: study the dynamics of
the slow reactions, assuming that the fast ones are at quasi-equilibrium, thereby
removing from the ODE system, the differential equations which describe the
evolution of the variables at quasi-equilibrium. Many authors [9,10,11,12] state
that carrying out rigorously this approximation is far from straightforward. We
would rather say that there are different ways to perform this approximation
and that it is the problem of ascertaining the domain of validity of each kind of
approximation which is not straightforward.

In another paper [13], the authors reformulated the methods of [9,10,11,12],
which are equivalent, and made them fully algorithmic, by means of differential
elimination methods [14,15,16,17,18]. An efficient implementation, based on [19],
was developed by the third author.

In this paper, we show that the reduction method of [13] can be applied to
our family of models. It yields a reduced model which contains that of [1] as
a particular case: our new approximation is more precise. By a very concise
proof, we show that the results obtained in [1] also hold for the new model. This
paper gives us also the opportunity to widen the audience of our [13, Differ-
entialModelReduction] algorithm by recalling its principle.

2 Our Family of Models

2.1 The Initial Model

A schematic model describing a single gene regulated by an order n polymer
of its own protein is provided in Fig. 1. It is borrowed from [1, page 68]. The
variables G and H represent the state of the gene. The mRNA concentration
and the concentration of the protein translated from the mRNA are represented
by M and P . The n types of polymers of P are denoted by P = P1, P2, . . . , Pn.
Greek letters represent parameters.

Pn

α

θ

ρf
ρb

δM

P

δP

M

G H

+

P

+
Pn

P
+

P
+

β

Pn−1

P2

Fig. 1. A single gene regulated by a polymer of its protein

58 F. Boulier et al.

First, one translates the diagram as a system of generalized [20] chemical
reactions (transcription and translation are not balanced reactions), introduc-
ing 2 (n− 1) extra parameters k−i , k

+
i (1 ≤ i ≤ n− 1):

G+ Pn

α
⇀↽
θ
H, G

ρf−→ G+M, H
ρb−→ H +M,

M
β−→M + P, M

δM−→ ∅, P
δP−→ ∅, Pi + P

k+
i⇀↽

k−
i

Pi+1 (1 ≤ i ≤ n− 1).

The initial model is obtained by translating the above chemical reactions system
as the following system of parametric ordinary differential equations, denoting
Ai = (k−i Pi+1 − k+

i Pi P). Variables G, H, M, P = P1, . . . , Pn are time varying
functions. The dot appearing over the variables, in the equations left handsides,
denotes the derivative w.r.t. the time.

Ġ = θH − αGPn,

Ḣ = −θH + αGPn,

Ṁ = ρf G+ ρbH − δMM,

Ṗ = βM − δP P + 2A1 +A2 + · · ·+An−1,

Ṗi = −Ai−1 +Ai (2 ≤ i ≤ n− 1),
Ṗn = −An−1 + θ H − αGPn.

(1)

The variablesG and H should be viewed as “random variables” instead of con-
centrations. They are bound by the relation G + H = γ0 where γ0 is a constant
equal to the total quantity of the gene. In [1], the variableH was replaced by γ0−G.

2.2 The New Quasi-Steady State Approximation

The quasi-steady state approximation that is performed in this paper relies on
the following hypotheses: the n − 1 chemical reactions describing the polymer-
ization of the protein are fast while the other ones are slow. This happens when
the parameters k+

i , k
−
i are much larger than the other parameters.

Given those hypotheses, one applies the algorithm [13, DifferentialMod-
elReduction] on our model (Fig. 1). The principle of the method is recalled in
Sect. 4.1. Applied on our model, the algorithm amounts to the following steps.
First one replaces, in the initial model, the contributions of the fast reactions
by new variables Fi (1 ≤ i ≤ n− 1). This just amounts to rewriting Ai = Fi in
system (1). Then one adds the following algebraic equations to the system, in
order to express the pre-equilibrium conditions:

0 = k+
i P Pi − k−i Pi+1 (1 ≤ i ≤ n− 1).

Then one eliminates the new variables Fi from the above differential-algebraic
system.1 One is led to the raw reduced model:
1 Our algorithm does not handle the generic system with a symbolic n. We computed

the reduced system for many different values of n, inferred the general formula and,
checked afterwards that the inferred formula is correct.

Applying a Rigorous Quasi-Steady State Approximation Method 59

Ġ = θH − αKn−1 P
n G,

Ḣ = −θH + αKn−1 P
nG,

Ṁ = ρbH + ρf G− δMM,

Ṗ =
n θH − nαKn−1 P

n G− δP P + βM
n−1∑
i=0

(i+ 1)2Ki P
i

(2)

where Ki =
k+
1 · · · k+

i

k−1 · · · k−i
with the convention K0 = 1.

2.3 Parameters Reduction

The raw reduced model (2) can now be simplified by rescaling all parameters
and variables. The following equations express the old variables as functions of
the new ones, which are overlined:

θ = θ δM, β = β δM, δP = δ δM, ρb =
µδ θ δM

αβ
, ρf =

δ θ (µ+ λ) δM
αβ

,

δM = δM, α =
α δM

Kn−1

, Ki =
Ki α

i

θ
i (1 ≤ i ≤ n− 1),

G = G, H = γ0 −G, M =
M δ θ

αβ
, P =

θ P

α
, t =

t

δM
·

Performing these substitutions in the raw reduced model (2), discarding the
redundant ODE which expresses the evolution of H and removing the bars for
legibility, one gets the reduced model (3):

Ġ = θ (γ0 −G−GPn),

Ṁ = λG+ γ0 µ−M,

Ṗ =
nα (γ0 −G−GPn) + δ (M − P)

n−1∑
i=0

(i+ 1)2Ki P
i

·
(3)

Remark 1. In order to recover [1, system (1)], it is sufficient to replace the right
handside of the last equation of system (3) by its numerator.

Last observe that one more parameter could be removed from the above system,
the software [21] shows. The above reduction is however more convenient in this
paper for it permits us to directly apply the results of [1].

60 F. Boulier et al.

3 On the Existence of Poincaré-Andronov-Hopf
Bifurcations

We prove in this section that no Poincaré-Andronov-Hopf bifurcation [22] arises
in system (3) for meaningful2 values of the parameters and the variables if and
only if n ≤ 8. Our proof essentially amounts to reducing the study of system (3)
to that of [1, system (1)] and then applying the main result of [1].

According to remark 1, the steady point equations of system (3) are exactly
those of [1, Sect. 4]. They write:

γ0 = G+GPn, M = P, λ =
P − µG− µGPn

G
·

The Jacobian matrix of system (3), evaluated at the steady points3 writes:

J =

⎛⎜⎜⎜⎜⎝
−θ (1 + Pn) −n θGPn−1 0

P − µG− µGPn

G
0 −1

−nα (1 + Pn)
B

−n
2 αGPn−1 + δ

B

δ

B

⎞⎟⎟⎟⎟⎠
where B =

n−1∑
i=0

(i+ 1)2Ki P
i.

If one clears the denominators of the last row of the Jacobian matrix J , i.e.
if one lets B = 1, then one exactly gets the Jacobian matrix of [1, page 73].

Remark 2. The matrix J is invariant under the following transformation, where �
denotes a nonzero arbitrary constant:

B → �B, δ → � δ, α→ � α.

Remark 3. The parameters Ki only occur in the denominator B of the Jacobian
matrix J .

Proposition 1. A Poincaré-Andronov-Hopf bifurcation arises for [1, system (1)]
if and only if such a bifurcation arises for the system (3), for meaningful values of
the systems variables and parameters.

Proof. Assume that a Poincaré-Andronov-Hopf bifurcation occurs for system (3),
for some meaningful4 values of the parameters and variables (1 ≤ i ≤ n− 1):

(G, P, M, λ, α, θ, δ, γ0, µ, Ki) = (G0, P 0, M0, λ0, α0, θ0, δ0, γ0
0 , µ

0, K0
i).

2 Following [1], all variables and parameters are required to be positive apart λ, which
may be negative but must anyway be greater than −µ.

3 Note that the derivative of B w.r.t. to P which appears in the Jacobian of the
system (3) disappears after the evaluation at the steady points since it is multiplied
by a term that cancels it.

4 In the sense precised above.

Applying a Rigorous Quasi-Steady State Approximation Method 61

Then, by introducing B0 =
∑n−1

i=0 (i+ 1)2K0
i (P 0)i, and according to the two

remarks above, a bifurcation of [1, system (1)] occurs for the meaningful values:

(G, P, M, λ, α, θ, δ, γ0, µ,) = (G0, P 0, M0, λ0, α0/B0, θ0, δ0/B0, γ0
0 , µ

0).

Conversely, suppose that a birfurcation of [1, system (1)] arises for some mean-
ingful values

(G, P, M, λ, α, θ, δ, γ0, µ) = (G0, P 0, M0, λ0, α0, θ0, δ0, γ0
0 , µ

0).

Using the two remarks above and taking � = 2, one can easily find some positive
values for K0

1 , . . . ,K
0
n−1 such that B0 =

∑n−1
i=0 (i+ 1)2K0

i (P 0)i = 2. Thus a
bifurcation for the system (3) occurs when

(G, P, M, λ, α, θ, δ, γ0, µ, Ki) = (G0, P 0, M0, λ0, 2α0, θ, 2δ0, γ0
0 , µ

0, K0
i)

which are meaningful values. ��

The next proposition follows from the results of [1] and Prop. 1:

Proposition 2. For meaningful values of the parameters and the variables, no
Poincaré-Andronov-Hopf bifurcation arises in system (3) if and only if n ≤ 8.

4 On the New Quasi-Steady State Approximation

4.1 Principle of the Method

Our method is based on similar ideas as in [11,9,12] (see [13, Sect. 4.2] for more
details). The main interest of our method is that it is fully algorithmic. One first
builds a system of differential equations involving some one extra variable Fi

for each fast reaction. Those extra variables are then eliminated by performing
elimination. Our original implementation is based on the diffalg [23] package
available in the standard library of MAPLE. A more recent implementation is
based on the RegularChains [19] package.

This section aims at summarizing [13, Sect. 2]. Consider the classical system
of chemical reactions (4) and (5) describing the transformation of a substrate S
into a product P under the action of the enzyme E (an intermediate complex C
is produced):

E + S
k1⇀↽

k−1

C (4)

C
k2−→ E + P (5)

Assume that the reaction (4) is fast. Our method consists in introducing the
following system:

�
Ė = −F1 + k2 C, Ṡ = −F1, Ċ = F1 − k2 C, Ṗ = k2 C, k1 E S = k−1 C

�
.

62 F. Boulier et al.

0.2

0.4

0.6

0.8

G

0 2 4 6 8
t

0.5

0.6

0.7

0.8

0.9

G

0 2 4 6 8
t

Fig. 2. Numerical simulations of the variable G(t). The horizontal axis give the time t.
The vertical one gives the value of G. For both simulations, n = 3, G(0) = 0.5,
M(0) = 1, P (0) = 1, γ0 = 1, α = 1, θ = 10, ρf = 10, ρb = 5, β = 50, δM = 5, δP = 10
and k+

i = 100 for each i. On the leftmost picture, k−
i = 100 thus Ki = (100/100)i = 1

for each i. On the rightmost one, k−
i = 2000 thus Ki = (100/2000)i = 0.05i for each i.

The solid line (original model (1)) and the diamond dots (reduced model (2)) curves
almost coincide. The dotted line [1, last system page 69] curve is the lower one on both
pictures.

In this system, the new variable F1 denotes the rate of reaction (4). This
variable introduces one degree of freedom. However, this freedom is contrained
by the the quasi-steady state equilibrium of reaction (4) which is k1E S = k−1 C.

The value of F1 can be computed by performing an elimination process which
yield:
�

F1 =
k2 E S (S + K)

K (S + E + K)
, Ė =

k2 E2 S

K (S + E + K)
, Ṗ =

k2 E S

K
, Ṡ = − k2 E S (S + K)

K (S + E + K)
, C =

E S

K

�

where K = k−1/k1.
Using the conservation laws E +C = E0 +C0 and S +C +P = S0 +C0 +P0

(where the subscript 0 indicates the initial concentration), assuming that C0 =
P0 = 0 and introducing Vm = k2E0, further computations yield:

Ṡ = − Vm S (K + S)
KE0 + (K + S)2

(6)

which differs from the Henri-Michaëlis-Menten and Briggs-Haldane formulae5:

Ṡ(t) = − Vm S(t)
K + S(t)

· (7)

With this easy example, the benefits are clear since the reduction is automatic
and yields the formula (6) which seems more accurate than the classical re-
ductions, especially when the condition S � E0 is not fulfilled. Observe that
formula (7) is recovered from (6) by assuming S � E0.

5 K =
k−1
k1

in Henri-Michaëlis-Menten’s case, K =
k−1+k2

k1
in Briggs-Haldane’s.

Applying a Rigorous Quasi-Steady State Approximation Method 63

4.2 A Better New Reduced Model

The reduced system (2) appears to be more precise than that of [1], as numerical
simulations show. Figure 2 shows two different numerical simulations of the
variable G(t) for the same parameters and initial conditions values except for
the k−i ’s (hence for the Ki’s). In both cases, three curves are displayed: one for
the initial model (1) in solid line, one for the raw reduced model (2) in diamond
dots and one for [1, last system page 69] in dotted line. In both cases, diamond
dots are almost superimposed on the solid line.

The reduction performed in [1] is clearly less precise than the new one. As
the Ki’s parameters tend towards zero, the reduction performed in [1] becomes
more accurate (the rightmost picture is obtained with values of Ki’s smaller than
that of the leftmost one). Thus the domain of validity of the reduction performed
in [1, last system page 69] is narrower than that of our new reduction: the Ki’s
need to be small.

5 Conclusion

In this paper, the result presented in [1] is generalized by applying an algorithmic,
accurate, quasi-steady state approximation method.

It is well-known that quasi-steady state approximation is useful for it permits
to reduce the size of the differential system to study and the number of its
parameters. But quasi-steady state approximation could also be viewed as a
way to study the dynamical properties of gene regulatory networks which are
invariant for a range of reactions mechanisms since the mechanisms involved in
the fast reactions may not need to be known in detail. This issue is important
[24]. This shows that the development of algorithmic and accurate quasi-steady
state approximation methods is an important research domain in the field of
algebraic biology.

References

1. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.E., Ürgüplü, A.: On proving the
absence of oscillations in models of genetic circuits. In: Anai, H., Horimoto, K.,
Kutsia, T. (eds.) Ab 2007. LNCS, vol. 4545, pp. 66–80. Springer, Heidelberg (2007),
http://hal.archives-ouvertes.fr/hal-00139667

2. Fall, C.P., Marland, E.S., Wagner, J.M., Tyson, J.J.: Computational Cell Biology.
Interdisciplinary Applied Mathematics, vol. 20. Springer, Heidelberg (2002)

3. Goodwin, B.C.: Temporal Organization in Cells. Academic Press, London (1963)

4. Goodwin, B.C.: Advances in Enzyme Regulation, vol. 3, p. 425. Pergamon Press,
Oxford (1965)

5. Griffith, J.S.: Mathematics of Cellular Control Processes. I. Negative Feedback to
One Gene. Journal of Theoretical Biology 20, 202–208 (1968)

6. Doedel, E.: AUTO software for continuation and bifurcation problems in ODEs
(1996), http://indy.cs.concordia.ca/auto

http://hal.archives-ouvertes.fr/hal-00139667
http://indy.cs.concordia.ca/auto

64 F. Boulier et al.

7. Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems: A
Guide to XPPAUT for Researchers and Students. Software, Environments, and
Tools, vol. 14. SIAM, Philadelphia (2002)

8. Conrad, E.D., Tyson, J.J.: Modeling Molecular Interaction Networks with Nonlin-
ear Differential Equations. In: Szallasi, Z., Stelling, J., Periwal, V. (eds.) System
Modeling in Cell Biology: From Concepts to Nuts and Bolts, pp. 97–124. The MIT
Press, Cambridge (2006)

9. Van Breusegem, V., Bastin, G.: Reduced order dynamical modelling of reaction sys-
tems: a singular perturbation approach. In: Proceedings of the 30th IEEE Confer-
ence on Decision and Control, Brighton, England, pp. 1049–1054 (December 1991)

10. Okino, M.S., Mavrovouniotis, M.L.: Simplification of Mathematical Models of
Chemical Reaction Systems. Chemical Reviews 98(2), 391–408 (1998)

11. Vora, N., Daoutidis, P.: Nonlinear model reduction of chemical reaction systems.
AIChE Journal 47(10), 2320–2332 (2001)

12. Bennet, M.R., Volfson, D., Tsimring, L., Hasty, J.: Transient Dynamics of Genetic
Regulatory Networks. Biophysical Journal 92, 3501–3512 (2007)

13. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.E.: Model Reduction of Chemical
Reaction Systems using Elimination. In: The international conference MACIS 2007
(2007), http://hal.archives-ouvertes.fr/hal-00184558

14. Ritt, J.F.: Differential Algebra. Dover Publications Inc, New York (1950),
http://www.ams.org/online bks/coll33

15. Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, New
York (1973)

16. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the radical
of a finitely generated differential ideal. In: ISSAC 1995: Proceedings of the 1995
international symposium on Symbolic and algebraic computation, pp. 158–166.
ACM Press, New York (1995), http://hal.archives-ouvertes.fr/hal-00138020

17. Wang, D.: Elimination Practice: Software Tools and Applications. Imperial College
Press, London (2003)

18. Boulier, F.: Differential Elimination and Biological Modelling. Radon Series on
Computational and Applied Mathematics (Gröbner Bases in Symbolic Analysis) 2,
111–139 (2007), http://hal.archives-ouvertes.fr/hal-00139364

19. Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library in MAPLE 10.
In: Kotsireas, I.S. (ed.) The MAPLE conference, pp. 355–368 (2005)

20. Horn, F., Jackson, R.: General mass action kinetics. Archive for Rational Mechanics
and Analysis 47, 81–116 (1972)

21. Sedoglavic, A., Ürgüplü, A.: Expanded Lie Point Symmetry (MAPLE package)
(2007), http://www.lifl.fr/∼sedoglav/Software

22. Hale, J.K., Koçak, H.: Dynamics and Bifurcations. Texts in Applied Mathematics,
vol. 3. Springer, New York (1991)

23. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representations for
radicals of finitely generated differential ideals. Technical report, Université Lille I,
LIFL, 59655, Villeneuve d’Ascq, France (1997); Ref. IT306. December 1998 version
published in the HDR memoir of Michel Petitot,
http://hal.archives-ouvertes.fr/hal-00139061

24. de Jong, H., Ropers, D.: Qualitative Approaches to the Analysis of Genetic Reg-
ulatory Networks. In: Szallasi, Z., Stelling, J., Periwal, V. (eds.) System Modeling
in Cell Biology: From Concepts to Nuts and Bolts, pp. 125–147. The MIT Press,
Cambridge (2006)

http://hal.archives-ouvertes.fr/hal-00184558
http://www.ams.org/online_bks/coll33
http://hal.archives-ouvertes.fr/hal-00138020
http://hal.archives-ouvertes.fr/hal-00139364
http://www.lifl.fr/~sedoglav/Software
http://hal.archives-ouvertes.fr/hal-00139061

On the Computational Power of Biochemistry

Luca Cardelli1 and Gianluigi Zavattaro2

1 Microsoft Research, Cambridge, UK
2 Dip. Scienze dell’Informazione, Università di Bologna, Italy

Abstract. We explore the computational power of biochemistry with
respect to basic chemistry, identifying complexation as the basic mech-
anism that distinguishes the former from the latter. We use two process
algebras, the Chemical Ground Form (CGF) which is equivalent to basic
chemistry, and the Biochemical Ground Form (BGF) which is a minimal-
istic extension of CGF with primitives for complexation. We characterize
an expressiveness gap: CGF is not Turing complete while BGF supports
a finite precise encoding of Random Access Machines, a well-known Tur-
ing powerful formalism.

1 Introduction

In this paper we introduce a minimal process algebra that aims to capture the es-
sential primitives of biochemistry. Biochemistry is obviously based on chemistry,
and in principle one can always express the behavior of a biochemical system by
a collection of chemical reactions. But there is a major practical problem with
that approach: the collection of reactions for virtually all biochemical systems is
an infinite one. For example, just to express the chemical reactions involved in
linear polymerization, we need to have a different chemical species for each length
n of polymer Pn, with reactions to grow the polymer: Pn + M → Pn+1. While
each polymer is finite, the set of possible polymerization reactions is infinite. Na-
ture adopts a more modular solution: the act of joining two molecules is called
complexation, and polymers are made by iteratively complexing monomers. Each
monomer obeys a finite simple set of rules that leads to the formation of polymers
of any length; therefore, it seems that there should be a finite way of describing
such systems. One can start by writing pseudo-reactions like P + M → P : M ,
where P : M is meant to represent a P (olymer) molecule attached to an ex-
tra M(onomer), yielding a longer polymer. However, there are in general many
possible ways (that is, many different patches on the surface of a molecule) by
which one molecule can exclusively form a complex with other molecules, and
soon one needs to describe the interface of each molecule. This situation, while
not commonly found in basic chemistry, is particularly acute in biochemistry,
where virtually all reactions are governed by enzymes and molecular machines,
which are themselves often built by complexation, and which usually operate by
complexing with their reactants.

The intuitive idea of a molecule as a stateful entity with a connectivity in-
terface is now common. Notations have emerged from biology that use such

K. Horimoto et al. (Eds.): AB 2008, LNCS 5147, pp. 65–80, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

66 L. Cardelli and G. Zavattaro

an idea to describe large biochemical systems [9,8]. Many formalized and com-
puterized approaches are currently being developed, including: practical tools,
where molecules are drawn as boxes with connecting lines [6]; graph-rewriting
and term-rewriting systems where a molecular complex is represented as a graph
or term, and a reaction is a graph or term rewrite [7,5]; coding techniques in
process algebra, where complexation can be expressed via some advanced fea-
tures [16]; and finally, specialized process algebras where molecular interfaces
and complexation are taken as primitive [15,4]. All these approaches aim to find
a descriptive framework that goes beyond simple chemical reactions, and that
can be used to represent common biochemical situations finitely and modularly.

The aim of this paper is then to investigate the computational boundary
between chemistry and biochemistry. That is: what is the intrinsic power of com-
plexation that gives it the ability to represent finitely what would otherwise have
an infinite representation? To clarify this issue we study two formal systems, which
for easy comparison are both based on the notion of molecules as stateful entities
with an interface. One system, the Chemical Ground Form (CGF) has been pre-
sented in [3]: it is equivalent to basic chemistry, and it does not include complexa-
tion. The other system, the Biochemical Ground Form (BGF) is proposed in this
paper as a minimalistic extension of CGF with complexation. As already men-
tioned, many richer formalisms can represent complexation too, but they also in-
clude mechanisms that have no direct biological implementation. Our proposal is
minimalistic in the following sense: it adds only two basic actions called
association and dissociation. Association allows two molecules to form a complex,
dissociation allows them to subsequently break such a complex. Between an asso-
ciation event involving two molecules and their subsequent dissociation, the two
molecules can still freely interact with other molecules or among themselves. In
other more expressive formalisms, see for instance the so-called exchange reactions
in [5], it is possible to specify events that change the internal state of one molecule
only if it is complexed with another one having a particular state.

The main contribution of this paper is the formalization of the following
expressiveness gap between chemistry and biochemistry: the CGF is not Tur-
ing complete while its minimalistic extension BGF is already Turing complete.
The results on the CGF are obtained by resorting to papers on the compu-
tational power of basic discrete chemistry. In particular, we refer to works by
Magnasco [11] and Soloveichik et al. [17] to show that only infinite CGF repre-
sentations could be sufficiently expressive to precisely model any Turing powerful
formalism. On the contrary, we show (as an original result) a finite BGF repre-
sentation of Random Access Machines [14], a well known register based Turing
powerful formalism.

The paper is structured as follows. In Section 2 we give the definition of the
CGF and we discuss its computational power. In Section 3 we introduce the
BGF, the new notation that enriches the CGF with complexation. In Section 4
we prove that the new process algebra is Turing complete, and finally in Section 5
we give some concluding remarks.

On the Computational Power of Biochemistry 67

2 Chemical Ground Form

In this section we give the definition of the Chemical Ground Form (CGF): the
notation for the representation of chemical systems presented in [3]. We first
informally recall the notation, then we give the formal syntax and semantics.

In the CGF each species has an associated definition describing the possible
actions for the molecules of that species. Each action π(r) has an associated
stochastic rate r (a positive real number) which quantifies the expected execution
time for the action π.

There are three kinds of actions. Action τ(r) indicates the possibility for a
molecule to be engaged in a unary reaction. For instance, the definition A =
τ(r); (B|C) is used to specify the possibility for one molecule of species A to be
engaged in a unary reaction that produces two molecules, one of species B and
one of species C (the operator “|” is borrowed from process algebras such as
CCS [13], where it represents parallel composition, and corresponds here to the
chemical “+”). Binary reactions have two reactants. The two reactants perform
two complementary actions ?a(r) and !a(r), where a is a name used to identify
the reaction; both the name a and the rate r must match for the reaction to
be enabled. For instance, given the definitions A =?a(r); C and B =!a(r); D,
we have that two molecules of species A and B can be engaged in a binary
reaction that produces two molecules, one of species C and one of species D.
If the molecules of one species can be engaged in several reactions, then the
corresponding definition admits a choice among several actions. The syntax of
choice is as follows: A = τ(r); B⊕?a(r′); C, meaning that molecules of species A
can be engaged in either a unary reaction that produces a molecule of species B,
or in a binary reaction with another molecule able to execute the complementary
action !a(r′). In the second case, the molecule of species A contributes to the
reaction by producing a new molecule of species C.

We now present the formal definition of the syntax of the CGF.

Definition 1 (Chemical Ground Form (CGF)). Consider the following de-
numerable sets: Species ranged over by variables X, Y , · · ·, Channels ranged over
by a, b, · · ·, Moreover, let r, s, · · · be rates (i.e. positive real numbers).

The syntax of CGF is as follows (where the big
∣∣ separates syntactic alterna-

tives while the small | denotes parallel composition):

E ::= 0
∣∣ X =M, E Reagents

M ::= 0
∣∣ π; P ⊕M Molecule

P ::= 0
∣∣ X |P Solution

π ::= τ(r)

∣∣ ?a(r)

∣∣ !a(r) Internal, Input, Output actions
CGF ::= (E, P) Reagents and initial Solution

Given a CGF (E, P), we assume that for every variable X occurring in P or E,
there is exactly one definition X = M in E.

In the following, trailing 0 are usually left implicit, and we use | also as an
operator over the syntax: if P and P ′ are 0-terminated lists of variables, ac-

68 L. Cardelli and G. Zavattaro

cording to the syntax above, then P |P ′ means appending the two lists into a
single 0-terminated list. Therefore, if P is a solution, then 0|P , P |0, and P are
syntactically equal.

We consider the discrete state semantics for the CGF defined in [3] in terms
of Continuous Time Markov Chains (CTMCs). The states of the CTMCs are
solutions in normal form denoted with P †: for a solution P , we indicate with
P † the normalized form of P where the variables are sorted in lexicographical
order (with 0 at the end), possibly with repetitions. The CTMC of a chemical
ground form is obtained in two steps: we first define the Labeled Transition
Graph (LTG) of a chemical ground form, then we show how to extract a CTMC
from the labeled transition graph.

In order to define the LTG of a chemical ground form we need to introduce
the following notation. Let E.X be the molecule defined by X in E, and M.i be
the i-th summand in a molecule of the form M = π1; P1 ⊕ · · · ⊕ πn; Pn. Given
a solution in normal form P †, with P †.m we denote the m-th variable in P †,
with P †\(m1, · · · , mn) we denote the solution obtained by removing from P † the
mi-th molecule for each i ∈ {1, · · · , n}.

A Labeled Transition Graph (LTG) is a set of quadruples 〈l : S† r→ T †〉 where
the transition labels l are either of the form {m.X.i} or {m.X.i, n.Y.j}, where
m, n, i, j are positive integers, X, Y are species names, m.X.i are ordered triples
and {· · · , · · ·} are unordered pairs.

Definition 2 (Labeled Transition Graph (LTG) of a Chemical Ground
Form). Given the Chemical Ground Form (E, P), we define Next(E, P) as the
set containing the following kinds of labeled transitions:

Unary: 〈{m.X.i} : P † r→ T †〉 such that P †.m = X and E.X.i = τ(r); Q and
T = (P †\m)|Q;

Binary: 〈{m.X.i, n.Y.j} : P † r→ T †〉 such that P †.m = X and P †.n = Y and
m �= n and E.X.i =?a(r); Q and E.Y.j =!a(r); R and T = (P †\m, n)|Q|R.

The Labeled Transition Graph of (E, P) is defined as follows:

LTG(E, P) =
⋃

n Ψn

where Ψ0 = Next(E, P) and Ψn+1 =
⋃
{Next(E, Q) | Q is a state of Ψn}

We now define how to extract from an LTG the corresponding CTMC.

Definition 3 (Continuous Time Markov Chain of an LTG). If Ψ is an
LTG, then |Ψ | is its CTMC, defined as the set of the triples P

r�→ Q with P �= Q,
obtained by summing the rates of all the transitions in Ψ that have the same

source and target state: |Ψ | = {P r�→ Q s.t. ∃〈l : P
r′
→ Q〉 ∈ Ψ with P �=

Q, and r =
∑

ri s.t. 〈li : P
ri→ Q〉 ∈ Ψ}.

We conclude this section by discussing the expressive power of the CGF. First
of all, we recall the equivalence result proved in [3] between the CGF and dis-
crete chemistry, that is, the traditional stochastic model of chemical kinetics
that describes interactions among integer numbers of molecules as CTMCs [12].
More precisely, it is proved that every discrete chemical model (with unary and

On the Computational Power of Biochemistry 69

binary reactions) has a semantically equivalent CGF, and vice versa. By seman-
tic equivalence between a chemical discrete model and a CGF, we mean that the
underlying CTMCs are isomorphic.

In [11], Magnasco shows how to represent in discrete chemistry the computa-
tional model of electronic digital computers, based on finite logical circuits with
an unbounded memory. Using the translation in [3], we can obtain an equivalent
model also in CGF. This is not sufficient to prove that CGF is Turing complete.
In fact, the technique proposed by Magnasco requires the exploitation of new
species every time a new memory location is needed during the computation.
Thus, the CGF system corresponding to a computable function requiring un-
bounded memory should include an unbounded number of species, thus also an
unbounded number of definitions. This is not admitted in the CGF syntax.

The question about Turing completeness of the CGF can be answered in the
light of more recent results proved in [17] by Soloveichik et al. In fact, they prove
that discrete chemistry is not expressive enough to precisely model any Turing
complete formalism, because the problem of deciding whether a certain molecule
could be produced in a given chemical system is decidable. Therefore, we can
conclude that also the CGF is not Turing complete because, by contraposition, if
the CGF were Turing complete, the translation from CGF to discrete chemistry
in [3] would allow one to model in discrete chemistry a Turing complete formalism
with a finite number of species. It is also possible to derive this result more
directly by a connection between the CGF and decidable properties of Petri
nets as shown, e.g., in [18].

3 Biochemical Ground Form

In this section we present a minimalistic process algebra for biochemistry, ob-
tained by extending the CGF with association and dissociation. We call the
new process algebra biochemical ground form (BGF). Following a similar pro-
posal outlined in [2], we consider two additional pairs of complementary actions,
&?a(r), &!a(r) for association and %?a(r), %!a(r) for dissociation. Before present-
ing the formal syntax and semantics of the new actions, we introduce them
informally by means of examples. To simplify the notation, in the examples we
abstract away from the stochastic rates, e.g., we write &?a instead of &?a(r).

Example 1 (Linearly growing polymer). Each complexation event involves ex-
actly two partners. We imagine that the partners have two complementary sur-
face patches that can interlock. If c represents a surface shape (say, a paraboloid),
then !c indicates one of the two patches (say, the convex one) and ?c indicates the
complementary patch (the concave one). Then, &!c is the action that presents
the convex patch, and &?c is the action that presents the concave patch. When
two such association actions meet, an actual complexation event can take place,
joining the two complementary surfaces.

A linearly growing polymer could be represented as follows, using a seed S
and a collection of equal monomers M . The seed starts the chain by presenting
a concave patch ?c: this is our initial, zero-length, polymer. Each monomer

70 L. Cardelli and G. Zavattaro

presents a convex patch !c, which can bind with an existing polymer on the com-
plementary concave patch. After (and only after) such a binding, a bound
monomer M ′ presents another concave patch ?c, so that the polymer can keep
growing. Both the seed and each monomer can have further behavior, S′ and M ′′.

S = &?c; S′

M = &!c; M ′

M ′ = &?c; M ′′

Each complexation event creates a unique bond between exactly the two
molecules that are joined to each other. This bond needs to be represented some-
how, to make sure that a molecule can bind with only one other molecule at a time
on any given patch. We represent such a bond as a unique key k that is shared by
the two complexed molecules (think of k as a fresh number, or as a fresh channel
in π-calculus [13]). Such unique keys, and related information, are collected in the
association history of each molecule. So, the first interaction of an S with an M ,
which initially have empty association histories (0), proceeds as follows:

S0 | M0 → S′
〈?c,k1〉 | M ′

〈!c,k1〉

Interaction with a second monomer then introduces a second fresh key in the
histories:

S0 | M0 | M0 → S′
〈?c,k1〉 | M ′

〈!c,k1〉 | M0 → S′
〈?c,k1〉 | M ′′

〈?c,k2〉::〈!c,k1〉 | M ′
〈!c,k2〉

This mechanism of creation of fresh association keys is repeated every time a
new association is created between a monomer and the subsequent one.

It is worth observing that, in any reachable configuration, we can reconstruct
from the association histories who is bound to whom, and on what surface the
bond was formed. Note that the description of the system is finite (3 reagents,
S, M , M ′), but that polymers of any length can be assembled (assuming the
initial availability of a corresponding amount of monomers).

Example 2 (Branching polymer). After complexation, a molecule is still free to
perform additional complexations or other interactions. That is, complexation
places no restrictions on the behavior of the original molecules, except for the fact
that new complexations cannot occur on surfaces that are already occupied, and
that decomplexations must happen consistently with prior complexations (as we
discuss shortly). To illustrate this freedom, let us modify the previous example
and allow each bound monomer to offer a seed for growing a new polymer branch:

S = &?c; S′

M = &!c; M ′

M ′ = &?c; M ′′

M ′′ = &?d; M ′′′

N = &!d; N ′

N ′ = &?c; N ′′

Where an M ′′ can bind through the interface d to an adaptor molecule N , which
then offers another c surface for branching.

On the Computational Power of Biochemistry 71

Example 3 (Actin-like polymer). Decomplexation is the inverse of complexation,
that is, two formerly joined molecules can dissociate. We indicate by %!c the
attempt to dissociate from the convex side, and %?c the attempt to dissociate
from the concave side. When two complexed molecules attempt complementary
dissociations, an actual decomplexation event can take place. To illustrate this
situation, we describe a different kind of linear polymer: one that can grow only
at one end, and can shrink only at the other end. There are four molecular states
for each monomer: Mf (free monomer), M l (monomer bound on the left), M r

(monomer bound on the right), and M b (monomer bound on both sides). Each
monomer has a left convex surface and a complementary right concave surface. A
polymer should associate (grow) only on the right and should dissociate (shrink)
only on the left.

Mf = &!c; M l ⊕&?c; M r

M l = %!c; Mf ⊕&?c; M b

M r = %?c; Mf

M b = %!c; M r

A free monomer Mf can either associate on the left convex surface and become
bound on the left, or associate on the right concave surface and become bound
on the right. A monomer M l bound only on the left can either dissociate on the
left (if allowed by its partner, which must in fact be an M r in this case) and
return free, or associate on the right (with an Mf) and become bound on both
sides. A monomer M r bound only on the right can only dissociate on the right:
that is, a polymer cannot grow on the left. A monomer M b bound on both sides
can only dissociate on the left (with an M r): that is, a polymer cannot shrink
on the right or break in the middle. These rules cover also the base cases when
a polymer of length 2 initially forms or finally dissolves.

A decomplexation should succeed only between a pair of molecules that were
actually complexed in their past history, and this can be checked by inspecting
the unique keys introduced during complexation. For example let us consider
two Mf molecules that complex and then immediately decomplex:

Mf
0 | M

f
0 → M l

〈!c,k〉|M r
〈?c,k〉 → Mf

0 |M
f
0

The second transition is allowed to happen because M l offers %!c, M r offers
the complementary %?c, and the same key k appears in both association his-
tories on the c interface (and with the correct convexity). As a consequence of
decomplexation, the keys are removed from the histories.

Example 4 (Unbounded linearly growing and shrinking polymer). Recursive de-
finitions of the species behavior allows us to specify systems in which an un-
bounded number of monomers can be created. We use this ability to specify a
linearly growing polymer started by a seed, that can also shrink removing the
last associated monomer, and for which there is no fixed maximal length. In or-
der to produce an unbounded number of monomer we consider a factory species
able to continuosly produce monomers:

72 L. Cardelli and G. Zavattaro

Fact = τ ; (Mf |Fact)
S = &?c; S′

S′ = %?c; S
Mf = &!c; M l

M l = %!c; Mf ⊕&?c; M b

M b = %?c; M l

It is easy to see that each seed molecule of species S has the ability to start
the creation of a polymer that can grow and shrink along one direction without
any fixed bound to its maximal length. We will exploit this technique in the
proof of Turing completeness of the biochemical ground form in order to model
registers, i.e., data structures on which increment, decrement and test for zero
operations can be executed. The intuition is that increments are modeled by
means of the creation and association of a new monomer, decrements by means
of the elimination of the last associated monomer, and test for zero simply by
checking the availability of a molecule of species S (the seed becomes of species
S′ when associated to a monomer).

Almost all new ingredients of the BGF have been presented in the examples
above. The unique additional aspect that requires discussion deals with mole-
cule splitting, that is the possibility for one reactant to produce more than one
molecule. We allow only molecules without complexations (i.e. with an empty
association history) to split. In fact, if we admit the splitting of complexed mole-
cules, we also need to extend the language to allow for the specification of the
distribution of the associations among the produced molecules: this is possible
but somewhat cumbersome. The restriction to splitting only uncomplexed mole-
cules simplifies the notation without limiting the computational power of the
calculus.

The complete syntax of the BGF is defined as follows.

Definition 4 (Biochemical Ground Form (BGF)). Consider the following
denumerable sets: Species ranged over by variables X, Y , X1, X2, · · ·, Channels
ranged over by a, b, · · ·, a totally ordered set of Association keys ranged over by
k, k′, · · ·. Moreover, let r, s, · · · be rates (i.e. positive real numbers).

The syntax of BGF is as follows:

E ::= 0
∣∣ X =M, E Reagents

M ::= 0
∣∣ π; P ⊕M Molecule

P ::= 0
∣∣ X |P Product

π ::= τ(r)

∣∣ ?a(r)

∣∣ !a(r) Internal, Input, Output actions∣∣ &?a(r)

∣∣ &!a(r) Association actions∣∣ %?a(r)

∣∣ %!a(r) Dissociation actions
S ::= 0

∣∣ XH |S Solution
H ::= 0

∣∣ 〈?a, k〉 :: H
∣∣ 〈!a, k〉 :: H Association history

BGF ::= (E, S) Reagents and initial Solution

On the Computational Power of Biochemistry 73

Given a BGF (E, S), we assume that for every variable X occurring in P or
E, there is exactly one definition X = M in E. Moreover, we assume that an
association key k either does not occur in S or it occurs in exactly two associa-
tions 〈?a, k〉 and 〈!a, k〉 (for some channel a) stored in the history of two distinct
molecules.1

In the following, trailing 0 are usually omitted also in association histories: for
instance, we denote 〈?a, k〉 :: 0 simply with 〈?a, k〉. Following this simplification,
we can use a product P to specify a corresponding solution S, including the same
molecules as in P , each of which having an empty association history. Moreover,
we consider :: also as an operator over the syntax of association histories: for
instance, if H and H ′ are 0-terminated association histories, according to the
syntax above, then H :: H ′ means appending the two lists into a single 0-
terminated list. Therefore, if H is an association history, then 0 :: H , H :: 0,
and H are syntactically equal.

The semantics of BGF is defined, analogously to the semantics of CGF, in
terms of a CTMC obtained in two steps, first the definition of a Labeled Tran-
sition Graph (LTG), then the extraction of a CTMC from the LTG. The second
step is obtained in the same way as described in Definition 3. Thus we simply
have to introduce a new definition for the LTG.

Due to the presence of the association histories, we need to introduce a new
normal form for solutions.

Definition 5 (Normalized Solution). For a solution S of a well formed BGF,
we indicate with S† the normalized form of S obtained by

1. sorting the molecules first lexicographically according to their species name,
2. then sorting the molecules of the same species according to their initial key (i.e.

the key of the first association in the history) putting the molecules without an
initial key (i.e. with an empty history) before those with an initial key,

3. and finally, if there are pairs of molecules of the same species with the same
initial key k, put the molecule with association 〈?a, k〉 before the molecule
with association 〈!a, k〉.

Note that normalized solutions are well defined because for each pair of syn-
tactically different molecules XH and X ′

H′ occurring in a well formed BGF, it
defines whether XH should precede X ′

H′ , or the vice versa. In fact, the unique
case in which this is not defined is when they are of the same species and they
both have an empty association history, thus they are syntactically identical.

On normalized solutions S†, we use the usual notation: S†.m denotes the m-th
molecule in S†, with S†\(m1, · · · , mn) we denote the solution obtained by remov-
ing from S† the mi-th molecule for each i ∈ {1, · · · , n}. We use also the following
notation on association histories: with H \ 〈?a, k〉 (resp. H \ 〈!a, k〉) we denote the
history obtained by removing from H the association 〈?a, k〉 (resp., 〈!a, k〉).
1 In BGF, we do not admit self-complexation, i.e., the possibility for one molecule to

associate with itself. Still, it is possible for complexed molecules to form cycles; e.g.,
circular polymers.

74 L. Cardelli and G. Zavattaro

We now describe how to produce a Labeled Transition Graph from the Bio-
chemical Ground Form (E, S). As in the previous section, Next(E, S) is a set of
quadruples 〈l : S† r→ T †〉.
Definition 6 (LTG of a BGF). Given a product P , with P0 we denote the
solution obtained adding the empty association history 0 to the molecules in P .
Given the BGF (E, S), we define Next(E, S) as the set containing the following
kinds of labeled transitions:

Unary: 〈{m.X.i} : S† r→ T †〉 such that S†.m = XH and E.X.i = τ(r); P and
T = (S†\m)|V such that
– if H = 0 then V = P0,
– if H �= 0 then P = X ′ and V = X ′

H ;
Binary: 〈{m.X.i, n.Y.j} : S† r→ T †〉 such that S†.m = XH and S†.n = YH′ and

m �= n and E.X.i =?a(r); P and E.Y.j =!a(r); Q and T = (S†\m, n)|V such
that
– if H = 0 and H ′ = 0 then V = P0|Q0,
– if H = 0 and H ′ �= 0 then Q = Y ′ and V = P0|Y ′

H′ ,
– if H �= 0 and H ′ = 0 then P = X ′ and V = X ′

H |Q0,
– if H �= 0 and H ′ �= 0 then P = X ′ and Q = Y ′ and V = X ′

H |Y ′
H′ ;

Complexation: 〈{m.X.i, n.Y.j} : S† r→ T †〉 such that S†.m = XH and S†.n =
YH′ and m �= n and E.X.i = &?a(r); X ′ and E.Y.j = &!a(r); Y ′ and
for each k′ we have that 〈?a, k′〉 �∈ H and 〈!a, k′〉 �∈ H ′ and T = (S† \
m, n)|X ′

〈?a,k〉::H |Y ′
〈!a,k〉::H where k is the smallest association key among those

that do not appear in the association histories in S†;
Decomplexation: 〈{m.X.i, n.Y.j} : S† r→ T †〉 such that S†.m = XH and

S†.n = YH′ and m �= n and E.X.i = %?a(r); X ′ and E.Y.j = %!a(r); Y ′ and
there exists k s.t. 〈?a, k〉 ∈ H and 〈!a, k〉 ∈ H ′ and T = (S†\m, n)|X ′

H\〈?a,k〉|
Y ′

H′\〈!a,k〉.

The Labeled Transition Graph of (E, S) is defined as follows:

LTG(E, S) =
⋃

n Ψn

where Ψ0 = Next(E, S) and Ψn+1 =
⋃
{Next(E, Q) | Q is a state of Ψn}

It is easy to see that the assumption at the end of the Definition 4, i.e. that an
association key k either does not occur in the solution or it occurs in exactly
two associations 〈?a, k〉 and 〈!a, k〉 (for some channel a) stored in the history
of two distinct molecules, is preserved by the labeled transition system. In fact,
the unique rules able to modify the association histories (the last two items in
the Definition 6), removes both instances of an association key or create two
instances of a new key, respectively.

The restriction, that we already informally discussed, that complexed molecules
cannot split follows from the fact that splitting is possible only in the first two
items of the Definition 6, and only in case the association history of the splitting
molecule is empty.

Finally, we define the semantics of a BGF (E, S) as |LTG(E, S)|, that is the
CTMC obtained from the labeled transition graph LTG(E, S) according to the
technique presented in Definition 3.

On the Computational Power of Biochemistry 75

4 Turing Completeness of BGF

We prove that Biochemical Ground Form is Turing complete. This result allows
us to conclude that the association and dissociation actions cannot be encoded
in the CGF, because the addition of these mechanisms makes BGF strictly more
expressive.

In order to prove that BGF is Turing complete, we show how to model Random
Access Machines (RAMs) [14], a well known Turing powerful formalism based
on registers containing nonnegative natural numbers. The registers are used by
a program, that is a set of indexed instructions Ii of two possible kinds:

– i : Inc(rj) that increments the register rj and then moves to the execution
of the instruction with index i + 1 and

– i : DecJump(rj , s) that attempts to decrement the register rj ; if the regis-
ter does not hold 0 then the register is actually decremented and the next
instruction is the one with index i + 1, otherwise the next instruction is the
one with index s.

We assume the existence of a special instruction Ihalt corresponding to program
termination.

In our encoding of RAMs, we use a simplified notation for BGF definitions
in which actions can be written in sequence. For instance the definition A =
π1; π2; C is a shorthand for the two definitions A = π1; B and B = π2; C. More-
over, we do not show the stochastic rates (r) of the actions as they are not
relevant: the execution of a RAM encoding proceeds deterministically (there
are no probabilistic choices governed by the rates) and the speed of the RAM
simulation is not important.

The encoding considers one species Ii for each instruction Ii. The behavior of
the molecules of species Ii is to update the registers according to the correspond-
ing instruction Ii, and then produce one molecule of species Ij corresponding to
the subsequent instruction to be executed.

Formally, the species corresponding to the instructions are defined as follows:

Ii =

⎧⎨⎩
!incj ; ?ack; Ii+1 if Ii = i : Inc(rj)
!decj ; ?ack; Ii+1 ⊕ !zeroj ; Is if Ii = i : DecJump(rj , s)
0 if Ii = Ihalt

In Figure 1 we graphically depict the above definitions using a graph-like no-
tation: each species is represented by one node, and a transition labeled with
an action π represents the possibility for the molecules of the source species to
perform the action π producing one molecule of the target species. In case of
an increment instruction, a request for increment incj is considered, then an ac-
knowledgment is required to have confirmation that the increment actually took
place, and finally the next instruction is activated. In case of a decrement, either
a decrement or a test for emptiness can take place: in the first case an acknowl-
edgment is required before activating the next instruction; in the second case
the jump is executed. In case of the terminating instruction, the corresponding
molecule simply does nothing.

76 L. Cardelli and G. Zavattaro

Fig. 1. Encoding of RAM instructions

Each register rj is modeled by a polymer similar to those described in the
Example 4. In this case the seed is of species Zj and the monomers are of
species Rj . The number of monomers in the polymer coincides with the register
content, namely, when the register holds the number l the polymer is composed
of exactly l monomers. As it is not possible to know a priori the number of
monomers necessary during the computation, we consider a factory, that is,
a molecule of species RF j which is responsible for the the generation of the
molecules of species Rj whenever they are needed. The last associated molecule
in the polymer is the only one able to interact with the instruction molecules:
if it is of species Zj the active action is ?zeroj , if it is of species Rj the active
action is ?decj . The effect of the execution of ?decj is the dissociation of the last
associated molecule from the polymer.

The formal definition of the species used to model registers is as follows:

Zj = ?zeroj ; Zj ⊕ &?linkj; %?linkj; Zj

RF j = ?incj;
(
RF j |(&!linkj; !ack; Rj)

)
Rj = (&?linkj; %?linkj; R

j
!linkj

) ⊕ (?decj ; %!linkj ; !ack;0)

In Figure 2 we graphically depict the encoding of registers. In this case we also
have to represent the splitting of the molecules of species RF j when performing
the action ?incj : the transition enters an intermediary splitting state represented
with a bar, from which we have one outgoing transition for each of the produced
molecules.

The remainder of this section is devoted to the formal proof of correctness of
this RAM encoding. We use the following notation. Given a RAM with registers
r1, · · · , rn, we denote with (Ii, r1 = l1, · · · , rn = ln) �→ (Ij , r1 = l′1, · · · , rn =
l′n) its possible steps of computation. Namely, if the RAM is going to execute
instruction Ii, and the register contents are l1, · · · , ln, respectively, then the next
instruction is Ij and the new register contents are l′1, · · · , l′n, respectively.

On the Computational Power of Biochemistry 77

rj with content n

Zj Rj Rj RjRj

n instances of Rj

Zj

?zeroj

&?lj

%?lj

?incj

Rj

!ackj

&!lj

&?lj

%?lj
?decj%!lj!ack

RFj

Fig. 2. Encoding of RAM registers

In the following we need to treat as equivalent some syntactically different solu-
tions which represent the same biological system. For instance, the two solutions

Z1
〈?link1,1〉 | R1

〈?link1,4〉::〈!link1,1〉 | R1
〈!link1,4〉

Z1
〈?link1,2〉 | R1

〈?link1,3〉::〈!link1,2〉 | R1
〈!link1,3〉

both denote the polymer representing the register r1 with content 2, even if they
differ in their association keys. Formally, we have that two solutions S and T
are equivalent if there exists an injective renaming ρ for the association keys in
S such that (S[ρ])† = T †, where S[ρ] denotes the result of the application of
the injective renaming to the solution S. In the example above, the injective
renaming used to prove that the two solutions are equivalent is {1 �→ 2, 4 �→ 3}.

We denote with [[(Ii, r1 = l1, · · · , rm = lm)]] the set of equivalent solutions
which represent the RAM ready to execute the instruction Ii and in which the
registers r1, · · · , rm have contents l1, · · · , lm, respectively. Formally, [[(Ii, r1 =
l1, · · · , rm = lm)]] is the set of solutions equivalent to:

Ii |
RF 1 | Z1

〈?link1,k1
1〉 | R

1
〈?link1,k2

1〉::〈!link1,k1
1〉 | · · · | R

1

〈!link1,k
l1
1 〉 |

· · ·
RFm | Zm

〈?linkm ,k1
m〉 | Rm

〈?linkm ,k2
m〉::〈!linkm,k1

m〉 | · · · | Rm
〈!linkm,klm

m 〉

Given a RAM denoted with R, having instructions I1, · · · , In and registers
r1, · · · , rm, we use ER to denote the definitions of the species I1, · · ·, In, Z1,
· · ·, Zm, RF 1, · · ·, RFm, and R1, · · ·, Rm as defined above. Thus, given one of

78 L. Cardelli and G. Zavattaro

the possible configurations (Ii, r1 = l1, · · · , rm = lm) of R, we model it with the
BGF (ER, S) where S is any of the solutions in [[(Ii, r1 = l1, · · · , rm = lm)]].

We are now ready to prove the correctness result.

Theorem 1. Let R be a RAM. Given one of its possible configurations (Ii, r1 =
l1, · · · , rm = lm) and a solution S0 ∈ [[(Ii, r1 = l1, · · · , rm = lm)]], we have that:

– either Ii = Ihalt and Next(ER, S) is empty;
– or (Ii, r1 = l1, · · · , rm = lm) �→ (Ij , r1 = l′1, · · · , rm = l′m) and there exist

S1, · · · , Sz such that for every 0 ≤ x < z we have that Next(ER, S†
x) contains

only one transition which has S†
x+1 as its target state, and moreover Sz ∈

[[(Ij , r1 = l′1, · · · , rm = l′m)]].

Proof (outline). The proof is by case analysis on the following four possible cases:
Ii = Ihalt, Ii = i : Inc(rj), Ii = i : DecJump(rj, s) with lj > 0, and Ii = i :
DecJump(rj, s) with lj = 0.

As a corollary of the theorem above, we have that if R is a RAM, given one
of its possible configurations (Ii, r1 = l1, · · · , rm = lm) and a solution S ∈
[[(Ii, r1 = l1, · · · , rm = lm)]], there exists a solution containing the molecule Ihalt

in |LTG(ER, S)| if and only if the computation starting from the configuration
(Ii, r1 = l1, · · · , rm = lm) halts. As the halting problem is undecidable for RAMs,
we have that in the BGF the problem of deciding whether a certain molecule
could be produced in a given system is undecidable. We have already observed
that, on the contrary, this property is decidable for the process algebra CGF.

5 Conclusion

Turing-powerful mechanisms are not a requirement for building sophisticated
nano-machines. Yet, the existence of Turing-powerful mechanisms guarantees a
certain level of generality and flexibility in constructing machinery of any desired
complexity, and provides evolution with adaptable toolkits to build upon. This
paper highlights the fact that nature widely employs Turing-powerful mecha-
nisms at the molecular level, and that it does so in a finitary combinatorial
way that is qualitatively different from the common notion of chemical reactions
between simple species. We have shown that the biochemical operations of com-
plexation and decomplexation, formalized in a very basic form, are sufficient to
raise expressiveness to the level of Turing-completeness, while simple chemistry
(with finite descriptions) is not sufficient. In other words, finite programming
constructs that are Turing powerful can be found in biochemistry but not in
simple chemistry.

It is interesting to note that similar computational boundaries have been
proved also in the context of process calculi based on membrane interactions such
as endocytosis, exocytosis, fusion, and fission. In [1], Busi and Gorrieri prove
that a basic process calculus including endoctytosis and exocytosis is Turing
complete, while this is not the case when only fusion and fission are considered.

On the Computational Power of Biochemistry 79

This because endocytosis allows for the nesting of membranes with an unbounded
depth, while this is not possible when only fission and fusion are considered. In
BGF, instead of using membrane nesting, we consider a more basic complexation
mechanism in order to generate structures with unbounded length.

The boundary of Turing-completeness gets even more interesting at the quanti-
tative, approximate, level. For instance, recent work by Liekens and Fernando [10]
shows how to approximate in discrete chemistry finite computations of Register
Machines with an error probability smaller than any given precision δ > 0. Solove-
ichik et al. [17], besides proving that in discrete chemistry it is not possible
to precisely model any Turing powerful formalism (the result we have used in
Section 2 to motivate that CGF is not Turing complete), show also how to ap-
proximate unbounded computations. A consequence of their results is that it is
always decidable whether a certain molecule could be produced in a chemical
system, while the question whether the system is likely to produce that molecule
is in general undecidable. This opens interesting questions about what is actually
decidable and what is undecidable in discrete chemistry. Some results recently
proved along this line of research can be found in [18].

References

1. Busi, N., Gorrieri, R.: On the Computational Power of Brane Calculi. In: Priami,
C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS
(LNBI), vol. 4220, pp. 16–43. Springer, Heidelberg (2006)

2. Cardelli, L.: Artificial Biochemistry. In: Proc. of Algorithmic Bioprocesses. LNCS
(to appear, 2008), http://lucacardelli.name

3. Cardelli, L.: On Process Rate Semantics. Theoretical Computer Science (in press,
2008), http://dx.doi.org/10.1016/j.tcs.2007.11.012

4. Cardelli, L., Pradalier, S.: Where Membranes Meet Complexes. In: Proc. of Con-
current Models in Molecular Biology (BioConcur. 2005) (2005)

5. Credi, A., Garavelli, M., Laneve, C., Pradalier, S., Silvi, S., Zavattaro, G.: Mod-
elization and Simulation of Nano Devices in nano-kappa Calculus. In: Calder, M.,
Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 168–183. Springer,
Heidelberg (2007)

6. Danos, V., Feret, J., Fontana, W., Krivine, J.: Kappa Factory (2007),
http://www.lix.polytechnique.fr/∼krivine/kappaFactory.html

7. Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Sci-
ence 325(1), 69–110 (2004)

8. Kitano, H., Funahashi, A., Matsuoka, Y., Oda, K.: Using process diagrams for the
graphical representation of biological networks. Nature Biotechnolgy 23, 961–966
(2005)

9. Kohn, K.W., Aladjem, M.I., Weinstein, J.N., Pommier, Y.: Molecular interaction
maps of bioregulatory networks: a general rubric for systems biology. Molecular
biology of the cell 17(1), 1–13 (2006)

10. Liekens, A.M.L., Fernando, C.T.: Turing complete catalytic particle computers.
In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.)
ECAL 2007. LNCS (LNAI), vol. 4648, pp. 1202–1211. Springer, Heidelberg (2007)

11. Magnasco, M.O.: Chemical Kinetics is Turing Universal. Physical Review Let-
ters 78, 1190–1193 (1997)

http://lucacardelli.name
http://dx.doi.org/10.1016/j.tcs.2007.11.012
http://www.lix.polytechnique.fr/~krivine/kappaFactory.html

80 L. Cardelli and G. Zavattaro

12. McQuarrie, D.A.: Stochastic approach to chemical kinetics. Journal of Applied
Probability 4, 413–478 (1967)

13. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

14. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, Englewood
Cliffs (1967)

15. Priami, C., Quaglia, P.: Beta Binders for Biological Interactions. In: Danos, V.,
Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer,
Heidelberg (2005)

16. Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic
name-passing calculus to representation and simulation of molecular processes.
Information Processing Letters 80, 25–31 (2001)

17. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with Finite Sto-
chastic Chemical Reaction Networks. Natural Computing (in press, 2008),
http://dx.doi.org/10.1007/s11047-008-9067-y

18. Zavattaro, G., Cardelli, L.: Termination Problems in Chemical Kinetics (2008),
http://lucacardelli.name

http://dx.doi.org/10.1007/s11047-008-9067-y
http://lucacardelli.name

The Geometry of the Neighbor-Joining

Algorithm for Small Trees

Kord Eickmeyer1 and Ruriko Yoshida2

1 Institut für Informatik, Humboldt-Universität zu Berlin, Berlin, Germany
2 University of Kentucky, Lexington, KY, USA

Abstract. In 2007, Eickmeyer et al. showed that the tree topologies
outputted by the Neighbor-Joining (NJ) algorithm and the balanced
minimum evolution (BME) method for phylogenetic reconstruction are
each determined by a polyhedral subdivision of the space of dissimilarity

maps R(n
2), where n is the number of taxa. In this paper, we will analyze

the behavior of the Neighbor-Joining algorithm on five and six taxa and
study the geometry and combinatorics of the polyhedral subdivision of
the space of dissimilarity maps for six taxa as well as hyperplane repre-
sentations of each polyhedral subdivision. We also study simulations for
one of the questions stated by Eickmeyer et al., that is, the robustness of
the NJ algorithm to small perturbations of tree metrics, with tree models
which are known to be hard to be reconstructed via the NJ algorithm.

1 Introduction

The Neighbor-Joining (NJ) algorithm was introduced by Saitou and Nei [14]
and is widely used to reconstruct a phylogenetic tree from an alignment of DNA
sequences because of its accuracy and computational speed. The NJ algorithm
is a distance-based method which takes all pairwise distances computed from
the data as its input, and outputs a tree topology which realizes these pairwise
distances, if there is such a topology (see Fig. 1). Note that the NJ algorithm is
consistent, i.e., it returns the additive tree if the input distance matrix is a tree
metric. If the input distance matrix is not a tree metric, then the NJ algorithm
returns a tree topology which induces a tree metric that is “close” to the input.
Since it is one of the most popular methods for reconstructing a tree among
biologists, it is important to study how the NJ algorithm works.

a b c d

a - 3 1.8 2.5
b - 2.8 3.5
c - 1.3
d -

a

b

c

d

1

2 1

0.3
0.5

Fig. 1. The NJ algorithm takes a matrix of pairwise distances (left) as input and com-
putes a binary tree (right). If there is a tree such that the distance matrix can be obtained
by taking the length of the unique path between two nodes, NJ outputs that tree.

K. Horimoto et al. (Eds.): AB 2008, LNCS 5147, pp. 81–95, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

82 K. Eickmeyer and R. Yoshida

A number of attempts have been made to understand the good results ob-
tained with the NJ algorithm, especially given the problems with the inference
procedures used for estimating pairwise distances. For example, Bryant showed
that the Q-criterion (defined in (Q) in Section 2.2) is in fact the unique selection
criterion which is linear, permutation invariant, and consistent, i.e., it correctly
finds the tree corresponding to a tree metric [2]. Gascuel and Steel gave a nice
review of how the NJ algorithm works [15].

One of the most important questions in studying the behavior of the NJ al-
gorithm is to analyze its performance with pairwise distances that are not tree
metrics, especially when all pairwise distances are estimated via the maximum
likelihood estimation (MLE). In 1999, Atteson showed that if the distance es-
timates are at most half the minimal edge length of the tree away from their
true value then the NJ algorithm will reconstruct the correct tree [1]. However,
Levy et al. noted that Atteson’s criterion frequently fails to be satisfied even
though the NJ algorithm returns the true tree topology [10]. Recent work of [11]
extended Atteson’s work. Mihaescu et al. showed that the NJ algorithm returns
the true tree topology when it works locally for the quartets in the tree [11]. This
result gives another criterion for when then NJ algorithm returns the correct tree
topology and Atteson’s theorem is a special case of Mihaescu et al.’s theorem.

For every input distance matrix, the NJ algorithm returns a certain tree topol-
ogy. It may happen that the minimum Q-criterion is taken by more than one
pair of taxa at some step. In practice, the NJ algorithm will then have to choose
one cherry in order to return a definite result, but for our analysis we assume
that in those cases the NJ algorithm will return a set containing all tree topolo-
gies resulting from picking optimal cherries. There are only finitely many tree
topologies, and for every topology t we get a subset Dt of the sample space (in-
put space) such that for all distance matrices in Dt one possible answer of the
NJ algorithm is t. We aim at describing these sets Dt and the relation between
them. One notices that the Q-criteria are all linear in the pairwise distances.
The NJ algorithm will pick cherries in a particular order and output a particular
tree t if and only if the pairwise distances satisfy a system of linear inequalities,
whose solution set forms a polyhedral cone in R(n

2). Eickmeyer et al. called such
a cone a Neighbor-Joining cone, or NJ cone. Thus the NJ algorithm will output
a particular tree t if and only if the distance data lies in a union of NJ cones [3].

In [3], Eickmeyer et al. studied the optimality of the NJ algorithm compared
to the balanced minimum evolution (BME) method and focused on polyhedral
subdivisions of the space of dissimilarity maps for the BME method and the NJ
algorithm. Eickmeyer et al. also studied the geometry and combinatorics of the
NJ cones for n = 5 in addition to the BME cones for n ≤ 8. Using geometry
of the NJ cones for n = 5, they showed that the polyhedral subdivision of the
space of dissimilarity maps with the NJ algorithm does not form a fan for n ≥ 5
and that the union of the NJ cones for a particular tree topology is not convex.
This means that the NJ algorithm is not convex, i.e., there are distance matrices
D, D′, such that NJ produces the same tree t1 on both inputs D and D′, but it
produces a different tree t2 �= t1 on the input (D+D′)/2 (see [3] for an example).

The Geometry of the Neighbor-Joining Algorithm for Small Trees 83

In this paper, we focus on describing geometry and combinatorics of the NJ
cones for six taxa as well as some simulation study using the NJ cones for one of
the questions in [3], that is, what is the robustness of the NJ algorithm to small
perturbations of tree metrics for n = 5. This paper is organized as follows: In
Section 2 we will describe the NJ algorithm and define the NJ cones. Section 3
states the hyperplane representations of the NJ cones for n = 5. Section 4
describes in summary the geometry and combinatorics of the NJ cones for n = 6.
Section 5 shows some simulation studies on the robustness of the NJ algorithm
to small perturbations of tree metrics for n = 5 with the tree models from [13].
We end by discussing some open problems in Section 6.

2 The Neighbor-Joining Algorithm

2.1 Input Data

The NJ algorithm is a distance-based method which takes a distance matrix, a
symmetric matrix (dij)0≤i,j≤n−1 with dii = 0 representing pairwise distances of
a set of n taxa {0, 1, . . . , n − 1}, as the input. Through this paper, we do not
assume anything on an input data except it is symmetric and dii = 0. Because of
symmetry, the input can be seen as a vector of dimension m :=

(
n
2

)
= 1

2n(n−1).
We arrange the entries row-wise. We denote row/column-indices by pairs of
letters such as a, b, c, d, while denoting single indices into the “flattened” vector
by letters i, j, The two indexing methods are used simultaneously in the
hope that no confusion will arise. Thus, in the four taxa example we have d0,1 =
d1,0 = d0. In general, we get di = da,b = db,a with

a = max
{
k
∣∣ 1

2
k(k − 1) ≤ i

}
=

⌊
1
2

+

√
1
4

+ 2i

⌋
, b = i− 1

2
(a− 1)a,

and for c > d we get
dc,d = dc(c−1)/2+d.

2.2 The Q-Criterion

The NJ algorithm starts by computing the so called Q-criterion or the cherry
picking criterion, given by the formula

qa,b := (n− 2)da,b −
n−1∑
k=0

da,k −
n−1∑
k=0

dk,b. (Q)

This is a key of the NJ algorithm to choose which pair of taxa is a neighbor.

Theorem 1 (Saitou and Nei, 1987, Studier and Keppler, 1988 [14,16]).
Let da,b for all pair of taxa {a, b} be the tree metric corresponding to the tree
T . Then the pair {x, y} which minimizes qa,b for all pair of taxa {a, b} forms a
neighbor.

84 K. Eickmeyer and R. Yoshida

Arranging the Q-criteria for all pairs in a matrix yields again a symmetric matrix,
and ignoring the diagonal entries we can see it as a vector of dimension m just
like the input data. Moreover, the Q-criterion is obtained from the input data
by a linear transformation:

q = A(n)d,

and the entries of the matrix A(n) are given by

A
(n)
ij = A

(n)
ab,cd =

⎧⎪⎨⎪⎩
n− 4 if i = j,

−1 if i �= j and {a, b} ∩ {c, d} �= ∅,
0 else,

(1)

where a > b is the row/column-index equivalent to i and likewise for c > d and
j. When no confusion arises about the number of taxa, we abbreviate A(n) to A.

After computing the Q-criterion q, the NJ algorithm proceeds by finding the
minimum entry of q, or, equivalently, the maximum entry of −q. The two nodes
forming the chosen pair (there may be several pairs with minimal Q-criterion)
are then joined (“cherry picking”), i.e., they are removed from the set of nodes
and a new node is created. Suppose out of our n taxa {0, . . . , n − 1}, the first
cherry to be picked is m − 1, so the taxa n − 2 and n − 1 are joined to form a
new node, which we view as the new node number n− 2. The reduced pairwise
distance matrix is one row and one column shorter than the original one, and by
our choice of which cherry we picked, only the entries in the rightmost column
and bottom row differ from the original ones. Explicitly,

d′i =

{
di for 0 ≤ i <

(
n−2

2

)
1
2 (di + di+(n−2) − dm−1) for

(
n−2

2

)
≤ i <

(
n−1

2

)
and we see that the reduced distance matrix depends linearly on the original
one:

d′ = Rd,

with R = (rij) ∈ R(m−n+1)×m, where

rij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 for 0 ≤ i = j <
(
n−2

2

)
1/2 for

(
n−2

2

)
≤ i <

(
n−1

2

)
, j = i

1/2 for
(
n−2

2

)
≤ i <

(
n−1

2

)
, j = i+ n− 2

−1/2 for
(
n−2

2

)
≤ i <

(
n−1

2

)
, j = m− 1

0 else.

The process of picking cherries is repeated until there are only three taxa left,
which are then joined to a single new node.

We note that since new distances d′ are always linear combinations of the
previous distances, all Q-criteria computed throughout the NJ algorithm are
linear combinations of the original pairwise distances. Thus, for every possible
tree topology t outputted by the NJ algorithm (and every possible ordering σ of

The Geometry of the Neighbor-Joining Algorithm for Small Trees 85

picked cherries that results in topology t), there is a polyhedral cone CT,σ ⊂ R(n
2)

of dissimilarity maps. The NJ algorithm will output t and pick cherries in the
order σ iff the input lies in the cone CT,σ . We call the cones CT,σ Neighbor-
Joining cones, or NJ cones.

2.3 The Shifting Lemma

We first note that there is an n-dimensional linear subspace of Rm which does
not affect the outcome of the NJ algorithm (see [11]). For a node a we define its
shift vector sa by

(sa)b,c :=

{
1 if a ∈ {b, c}
0 else

which represents a tree where the leaf a has distance 1 from all other leaves
and all other distances are zero. The Q-criterion of any such vector is −2 for
all pairs, so adding any linear combination of shift vectors to an input vector
does not change the relative values of the Q-criteria. Also, regardless of which
pair of nodes we join, the reduced distance matrix of a shift vector is again a
shift vector (of lower dimension), whose Q-criterion will also be constant. Thus,
for any input vector d, the behavior of the NJ algorithm on d will be the same
as on d + s if s is any linear combination of shift vectors. We call the subspace
generated by shift vectors S.

We note that the difference of any two shift vectors is in the kernel of A, and
the sum of all shift vectors is the constant vector with all entries equal to n. If
we fix a node a then the set

{sa − sb | b �= a}

is linearly independent.

2.4 The First Step in Cherry Picking

After computing the Q-criterion q, the NJ algorithm proceeds by finding the
minimum entry of it, or, equivalently, the maximum entry of −q. The set cqi ⊂
Rm of all q-vectors for which qi is minimal is given by the normal cone at the
vertex −ei to the (negative) simplex

∆m−1 = conv{−ei | 0 ≤ i ≤ m− 1} ⊂ Rm,

where e0, . . . , em−1 are the unit vectors in Rm. The normal cone is defined in
the usual way by

N∆m−1 (−ei) := {x ∈ Rm | (−ei,x) ≥ (p,x) for p ∈ ∆m−1}
= {x ∈ Rm | (−ei,x) ≥ (−ej ,x) for 0 ≤ j ≤ m− 1} ,

(2)

with (·, ·) denoting the inner product in Rm.

86 K. Eickmeyer and R. Yoshida

Substituting q = Ad into (2) gives

q ∈ cqi ⇔ i = argmax(−ej, Ad)

⇔ i = argmax(−AT ej ,d)
⇔ i = argmax(−Aej ,d) because A is symmetric.

(3)

Therefore the set cdi of all parameter vectors d for which the NJ algorithm will
select cherry i in the first step is the normal cone at −Aei to the polytope

Pn := conv{−Ae0, . . . ,−Aem−1}. (4)

The shifting lemma implies that the affine dimension of the polytope Pn is at
most m − n. Computations using polymake show that this upper bound gives
the true value.

If equality holds for one of the inner products in this formula, then there are
two cherries with the same Q-criterion.

As the number of taxa increases, the resulting polytope gets more compli-
cated very quickly. By symmetry, the number of facets adjacent to a vertex
is the same for every vertex, but this number grows following a strange pat-
tern. See Table 1 for some calculated values. We also computed f-vectors for
Pn via polymake. With n = 5, we have (1, 10, 45, 90, 75, 22, 1), with n = 6,
(1, 15, 105, 435, 1095, 1657, 1470, 735, 195, 25, 1), and with n ≥ 7 we ran polymake
over several hours and it took more than 9GB RAM. Therefore, we could not
compute them.

Table 1. The polytopes Pn for some small numbers of taxa n

no. of no. of dimension facets through no. of
taxa vertices vertex facets

4 3 2 2 3
5 10 5 12 22
6 15 9 18 25
7 21 14 500 717
8 28 20 780 1,057
9 36 27 30,114 39,196
10 45 35 77,924 98,829

2.5 The Cone cdi

Equation (3) allows us to write cdi as an intersection of half-spaces as follows:

cdi = {x | (−Aei,x) ≥ (−Aej ,x) for j �= i}
= {x | (−A(ei − ej),x) ≥ 0 for j �= i}

=
⋂
j 	=i

{x | (−A(ei − ej),x) ≥ 0}
(5)

The Geometry of the Neighbor-Joining Algorithm for Small Trees 87

We name the half-spaces, their interiors and the normal vectors defining them
as follows:

h(n)
ij := −A(n)(ei − ej),

H
(n)
ij :=

{
x ∈ Rm | (h(n)

ij ,x) ≥ 0
}
,

H̊
(n)
ij :=

{
x ∈ Rm | (h(n)

ij ,x) > 0
}
,

(6)

where again we omit the superscript (n) if the number of taxa is clear.
If there are more than four taxa, then this representation is not redundant:

For any pair i and j of cherries, we can find a parameter vector d lying on the
border of Hij (i.e., (hij ,d) = 0) but in the interior H̊ik of the other half-spaces
for k �= i, j. One such d is given by

dk :=

{
2 if k = i or k = j,

4 else.

Thus we have found an H-representation of the polyhedron cdi consisting of only
m−1 inequalities. Note that Table 1 implies that a V-representation of the same
cone would be much more complicated, as the number of vectors spanning it is
equal to the number of facets incident at the vertex −Aei.

Example 1. The normal vectors to the 22 facets of P5, and thus the rays of the
normal cones to P5, form two classes (see Fig. 2). The first class contains a total
of 12 vectors (as there are 12 assignments of nodes 0 to 4 to the labels a to
e which yield nonisomorphic labelings), and every normal cone contains six of
them. The second class contains 10 vectors, and again every normal cone has six
of them as rays. For each class there are two diagrams in Fig. 2, and we obtain
a normal vector to one of the facets of P5 by assigning nodes from {0, . . . , 4}
to the labels a, . . . , e. The left diagram tells which vertices of P5 belong to the
facet defined by that normal vector: Two nodes in the diagram are connected by
an edge iff the vertex belonging to that pair of nodes is in the facet. The edges
in the right diagram are labeled with the distance between the corresponding
pair of nodes in the normal vector. This calls for an example: Setting a = 0, . . . ,
e = 4, Fig. 2(a) gives a distance vector

(d01, d02, . . . , d24, d34)T = (−1, 1, 1,−1,−1, 1, 1,−1, 1,−1)T,

which is a common ray of the cones cd01, cd12, cd23, cd34 and cd04. Thus of the
22 facets of P5, 12 have five vertices and 10 have six vertices.

a

b
c

d
e

1
−1

b c d

a

e

−1

1

3

(a)
a

b
c

d
e

(b) a

b

e

dc

Fig. 2. Diagrams describing the facet-normals of P5

88 K. Eickmeyer and R. Yoshida

3 The NJ Cones for Five Taxa

In the case of five taxa there is just one unlabeled tree topology (cf. Fig. 3) and
there are 15 distinct labeled trees: We have five choices for the leaf which is not
part of a cherry and then three choices how to group the remaining four leaves
into two pairs. For each of these labeled topologies, there are two ways in which
they might be reconstructed by the NJ algorithm: There are two pairs, any one
of which might be chosen in the first step of the NJ algorithm.

1

2

3

40 (a) (b)

3
42

1
0

βα

Fig. 3. (a) A tree with five taxa (b) The same tree with all edges adjacent to leaves
reduced to length zero. The remaining two edges have lengths α and β.

For distinct leaf labels a, b and c ∈ {0, 1, 2, 3, 4} we define Cab,c to be the
set of all input vectors for which the cherry a-b is picked in the first step and c
remains as single node not part of a cherry after the second step. For example,
the tree in Fig. 3(a) is the result for all vectors in C10,2∪C43,2. Since for each tree
topology ((a, b), c, (d, e)) (this tree topology is written in the Newick format) for
distinct taxa a, b, c, d, e ∈ {0, 1, 2, 3, 4}, the NJ algorithm returns the same tree
topology with any vector in the union of two cones Cab,c ∪ Cde,c, there are 30
such cones in total, and we call the set of these cones C.

3.1 Permuting Leaf Labels

Because there is only one unlabeled tree topology, we can map any labeled
topology to any other labeled topology by only changing the labels of the leafs.
Such a change of labels also permutes the entries of the distance matrix. In this
way, we get an action of the symmetric group S5 on the input space R10, and
the permutation σ ∈ S5 maps the cone Cab,c linearly to the cone Cσ(a)σ(b),σ(c).
Therefore any property of the cone Cab,c which is preserved by unitary linear
transformations must be the same for all cones in C, and it suffices to determine
it for just one cone.

The action of S5 on R10 decomposes into irreducible representations by

R⊕ R4︸ ︷︷ ︸
=S

⊕ R5︸︷︷︸
=:W

,

where the first summand is the subspace of all constant vectors and the second
one is the kernel of A(5). The sum of these two subspaces is exactly the space

The Geometry of the Neighbor-Joining Algorithm for Small Trees 89

S generated by the shift vectors. The third summand, which we call W , is the
orthogonal complement of S and it is spanned by vectors wab,cd in W with

(wab,cd)xy :=

⎧⎪⎨⎪⎩
1 if xy = ab or xy = cd

−1 if xy = ac or xy = bd

0 else

where a, b, c and d are pairwise distinct taxa in {0, 1, 2, 3, 4} and (wab,cd)xy is
the x–yth coordinate of the vector wab,cd. One linearly independent subset of
this is

w1 := w01,34, w2 := w12,40, w3 := w23,01, w4 := w34,12, w5 := w40,23.

Note that the 5-cycle (01234) of leaf labels cyclically permutes these basis vec-
tors, whereas the transposition (01) acts via the matrix

T :=
1
2

⎛⎜⎜⎜⎜⎝
2 1 1 1 1
0 1 −1 −1 −1
0 −1 −1 1 −1
0 −1 1 −1 −1
0 −1 −1 −1 1

⎞⎟⎟⎟⎟⎠ .

Because a five-cycle and a transposition generate S5, in principle this gives us
complete information about the operation.

3.2 The Cone C43,2

Since we can apply a permutation σ ∈ S5, without loss of generality, we suppose
that the first cherry to be picked is cherry 9, which is the cherry with leaves 3
and 4. This is true for all input vectors d which satisfy

(h9,i,d) ≥ 0 for i = 0, . . . , 8,

where the vector
h(n)

ij := −A(n)(ei − ej)

is perpendicular to the hyperplane of input vector for which cherries i and j
have the same Q-criterion, pointing into the direction of vectors for which the
Q-criterion of cherry i is lower.

We let r1, r2 and r3 be the first three rows of −A(4)R(5). If (r1,d) is maximal
then the second cherry to be picked is 0-1, leaving 2 as the non-cherry node, and
similarly r2 and r3 lead to non-cherry nodes 1 and 0. This allows us to define the
set of all input vectors d for which the first picked cherry is 3-4 and the second
one is 0-1:

C34,2 := {d | (h9,i,d) ≥ 0 for i = 0, . . . , 8, and (r1− r2,d) ≥ 0, (r1− r3,d) ≥ 0}.
(7)

We have defined this set by 11 bounding hyperplanes. However, in fact, the
resulting cone has only nine facets. A computation using polymake [6] reveals

90 K. Eickmeyer and R. Yoshida

that the two hyperplanes h9,1 and h9,2 are no longer faces of the cone, while the
other nine hyperplanes in (7) give exactly the facets of the cone. That means
that, while we can find arbitrarily close input vectors d and d′ such that with
an input d the NJ algorithm will first pick cherry 3-4 and with an input d′ the
NJ algorithm will first pick cherry 1-2 (or 0-2), we cannot do this in such a way
that d will result in the labeled tree topology of Fig. 3, where 2 is the lonely leaf.

Also note that C, the set of NJ cones which the NJ algorithm returns the
same tree topology with any vector in the union of two cones Cab,c ∪ Cde,c, is
not convex which is shown in [3]. For details of geometry and combinatorics of
the NJ cones for n = 5, see [3].

4 The Six Taxa Case

Note that since each of the NJ cones includes constraints for five taxa, the
union of the NJ cones which gives the same tree topology is not convex. To
analyze the behavior of NJ on distance matrices for six taxa, we use the action
of the symmetric group as much as possible. However, in this case we get three
different classes of cones which cannot be mapped onto each other by this action.
We assume the cherry which is picked in the first step to consist of the nodes 4
and 5. Picking this cherry replaces these two nodes by a newly created node 45,
and we have to distinguish two different cases in the second step (see Fig. 4):

– If the cherry in the second step does not contain the new node 45, we may
assume the cherry to be 01. For the third step, we again get two possibilities:
• The two nodes 45 and 01 get joined in the third step. We call the cone

of input vectors for which this happens CI.
• The node 45 is joined to one of the nodes 2 and 3, without loss of

generality, to 3. We call the resulting cone CII.
– If the cherry in the second step contains the new node 45, we may assume

the other node of this cherry to be 3, creating a new node 45 − 3. In the
third step, all that matters is which of the three nodes 0, 1 and 2 is joined
to the node 45 − 3, and we may, without loss of generality, assume this to
be node 2. This gives the third type of cone, CIII.

The resulting tree topology for the cone CI is shown in Fig. 5(a), while both
CII and CIII give the topology shown in 5(b). We now determine which elements
of S6 leave these cones fixed (stabilizer) and how many copies of each cone give
the same labeled tree topology:

CI CII CIII

stabilizer 〈(01), (23), (45)〉 〈(01), (45)〉 〈(01), (45)〉
size of stabilizer 8 4 4
number of cones 90 180 180
cones giving same labeled topology 6 2 2
solid angle (approx.) 2.888 · 10−3 1.848 · 10−3 2.266 · 10−3

The Geometry of the Neighbor-Joining Algorithm for Small Trees 91

CI

CII

CIII

Fig. 4. The three ways of picking cherries in the six taxa case

2
1
0

4
53

23

01 45
(a) (b)

βα γ
α

β

γ

Fig. 5. The two possible topologies for trees with six leaves, with edges connecting to
leaves shrunk to zero

Thus, the input space R15 is divided into 450 cones, 90 of type I and 180 each
of types II and III. There are 15 different ways of assigning labels to the tree
topology in Fig. 5(a), and for each of these there are six copies of CI whose union
describes the set of input vectors resulting in that topology. For the topology in
Fig. 5(b) we get 90 ways of assigning labels to the leaves, each corresponding to
a union of two copies of CII and two copies of CIII.

The above table also gives the solid angles of the three cones. In the five
taxa case, any two cones can be mapped onto one another by the action of the
symmetric group, which is unitary. Therefore all thirty cones have the same solid
angle, which must be 1/30. However, in the six taxa case, we get different solid
angles, and we see that about “3/4” of the solid angle at the origin are taken by
the cones of types II and III. Thus, on a random vector chosen according to
any probability law which is symmetric around the origin (e.g., standard normal
distribution), NJ will output the tree topology of Fig. 5(b) with probability
about 3/4.

On the other hand, any labeled topology of the type in Fig. 5(a) belongs to six
cones of type I, giving a total solid angle of ≈ 1.73 · 10−2, whereas any labeled
topology of the type in Fig. 5(b) belongs to two cones each of type II and III,
giving a total solid angle of only ≈ 0.82 · 10−2, which is half as much. This
suggests that reconstructing trees of the latter topology is less robust against
noisy input data.

92 K. Eickmeyer and R. Yoshida

5 Simulation Results

In this section we will analyze how the tree metric for a tree and pairwise distances
estimated via the maximum likelihood estimation lie in the polyhedral subdivi-
sion of the sample space. In particular, we analyze subtrees of the two parameter
family of trees described by [13]. These are trees for which the NJ algorithm has
difficulty in resolving the correct topology. In order to understand which cones
the data lies in, we simulated 10,000 data sets on each of the two tree shapes, T1

and T2 (Fig. 6) at the edge length ratio, a/b = 0.03/0.42 for sequences of length
500BP under the Jukes-Cantor model [9]. We also repeated the runs with the
Kimura 2-parameter model [7]. They are the cases (on eight taxa) in [13] that
the NJ algorithm had most difficulties in their simulation study (also the same as
in [10]). Each set of 5 sequences are generated via evolver from PAML package [17]
under the given model. evolver generates a set of sequences given the model and
tree topology using the birth-and-death process. For each set of 5 sequences, we
compute first pairwise distances via the heuristic MLE method using a software
fastDNAml [12]. To compute cones, we used MAPLE and polymake.

a

a

a

a

a

b

b

b

b

b b

b

b

b

T1 T2

Fig. 6. T1 and T2 tree models which are subtrees of the tree models in [13]

To study how far each set of pairwise distances estimated via the maximum
likelihood estimation (which is a vector y in R5) lies from the cone, where the ad-
ditive tree metric lies, in the sample space, we calculated the �2-distance between
the cone and a vector y.

Suppose we have a cone C defined by hyperplanes n1, . . . ,nr, i.e.,

C = {x | (ni,x) ≥ 0 for i = 1, . . . , r},

and we want to find the closest point in C from some given point v. Because C
is convex, for �2-norm there is only one such point, which we call u. If v ∈ C
then u = v and we are done. If not, there is at least one ni with (ni,v) < 0,
and u must satisfy (ni,u) = 0.

Now the problem reduces to a lower dimensional problem of the same kind:
We project v orthogonally into the hyperplane H defined by (ni,x) = 0 and call
the new vector ṽ. Also, C ∩H is a facet of C, and in particular a cone, so we
proceed by finding the closest point in this cone from ṽ.

The Geometry of the Neighbor-Joining Algorithm for Small Trees 93

0

200

400

600

800

1000

1200

0 0.05 0.1 0.15 0.2 0.25 0.3

n
r

o
f
ca

se
s

distance

Distances of correctly classified vectors from closest misclassified vector

T1 JC
T2 JC

T1 Kimura
T2 Kimura

noiseless input

0

200

400

600

800

1000

1200

1400

1600

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

n
r

o
f
ca

se
s

distance

Distances of misclassified input vectors from closest correctly classified vector

T1 JC
T2 JC

T1 Kimura
T2 Kimura

Fig. 7. Distances of correctly (top) and incorrectly (bottom) classified input vectors
to the closest incorrectly/correctly classified vector

We say an input vector (distance matrix) is correctly classified if the vector is
in one of the cones where the vector representation of the tree metric (noiseless
input) is. We say an input vector is incorrectly classified if the vector is in the
complement of the cones where the vector representation of the tree metric is.
For input vectors (distance matrices) which are correctly classified by the NJ
algorithm, we compute the minimum distance to any cone giving a different tree
topology. This distance gives a measure of robustness or confidence in the result,
with bigger distances meaning greater reliability. The results are plotted in the
left half of Fig. 7 and in Fig. 8. Note that the distance of the noiseless input,
i.e., the tree metric from the tree we used for generating the data samples, gives
an indication of what order of magnitude to expect with these values.

94 K. Eickmeyer and R. Yoshida

JC Kimura2
T1 T2 T1 T2

of cases 3,581 6,441 3,795 4,467
Mean 0.0221 0.0421 0.0415 0.0629
Variance 2.996 · 10−4 9.032 · 10−4 1.034 · 10−3 2.471 · 10−3

Fig. 8. Mean and variance of the distances of correctly classified vectors from the
nearest misclassified vector

JC Kimura2
T1 T2 T1 T2

of cases 6,419 3,559 6,205 5,533
Mean 0.0594 0.0331 0.0951 0.0761
Variance 0.0203 7.39 · 10−4 0.0411 3.481 · 10−3

Fig. 9. Mean and variance of the distances of misclassified vectors to the nearest cor-
rectly classified vector

For input vectors to which the NJ algorithm returns with a tree topology
different from the correct tree topology, we compute the distances to the two
cones for which the correct answer is given and take the minimum of the two.
The bigger this distance is, the further we are off. The results are shown in the
right half of Fig. 7 and in Fig. 9.

From our results in Fig. 8 and Fig. 9, one notices that the NJ algorithm returns
the correct tree more often with T2 than with T1. These results are consistent
with the results in [15,11]. Note that any possible quartet in T1 has a smaller
(or equal) length of its internal edge than in T2 (see Fig. 6). Gascuel and Steel
defined this measure as neighborliness [15]. Mihaescu et al. showed that the NJ
algorithm returns the correct tree if it works correctly locally for the quartets in
the tree [11]. The neighborliness of a quartet is one of the most important factors
to reconstruct the quartet correctly, i.e., the shorter it is the more difficult the
NJ algorithm returns the correct quartet. Also Fig. 7 shows that most of the
input vectors lie around the boundary of cones, including the noiseless input
vector (the tree metric). This shows that the tree models T1 and T2 are difficult
for the NJ algorithms to reconstruct the correct trees. All source code for these
simulations described in this paper will be available at authors’ websites.

6 Open Problems

Question 1. Can we use the NJ cones for analyzing how the NJ algorithm works
if each pairwise distance is assumed to be of the form D0 + ε where D0 is the un-
known true tree metric, and ε is a collection of independent normally distributed
random variables? We think this would be very interesting and relevant.

Question 2. With any n, is there an efficient method for computing (or approxi-
mating) the distance between a given pairwise distance vector and the boundary

The Geometry of the Neighbor-Joining Algorithm for Small Trees 95

of the NJ optimality region which contains it? This problem is equivalent to pro-
jecting a point inside a polytopal complex P onto the boundary of P . Note that
the size of the complex grows very fast with n. How fast does the number of
the complex grow? This would allow assigning a confidence score to the tree
topology computed by the NJ algorithm.

References

1. Atteson, K.: The performance of neighbor-joining methods of phylogenetic recon-
struction. Algorithmica 25, 251–278 (1999)

2. Bryant, D.: On the uniqueness of the selection criterion in neighbor-joining. J.
Classif. 22, 3–15 (2005)

3. Eickmeyer, K., Huggins, P., Pachter, L., Yoshida, R.: On the optimality of the
neighbor-joining algorithm. Algorithms in Molecular Biology 3 (2008)

4. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood
approach. Journal of Molecular Evolution 17, 368–376 (1981)

5. Galtier, N., Gascuel, O., Jean-Marie, A.: Markov models in molecular evolution.
In: Nielsen, R. (ed.) Statistical Methods in Molecular Evolution, pp. 3–24 (2005)

6. Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes.
In: Kalai, G., Ziegler, G.M. (eds.) Polytopes — Combinatorics and Computation,
pp. 43–74 (2000)

7. Kimura, M.: A simple method for estimating evolutionary rates of base substi-
tution through comparative studies of nucleotide sequences. Journal of Molecular
Evolution 16, 111–120 (1980)

8. Neyman, J.: Molecular studies of evolution: a source of novel statistical problems.
In: Gupta, S., Yackel, J. (eds.) Statistical decision theory and related topics, pp.
1–27. New York Academic Press, London (1971)

9. Jukes, H.T., Cantor, C.: Evolution of protein molecules. In: Munro, H.N. (ed.)
Mammalian Protein Metabolism, pp. 21–32. New York Academic Press, London
(1969)

10. Levy, D., Yoshida, R., Pachter, L.: Neighbor-joining with phylogenetic diversity
estimates. Molecular Biology and Evolution 23, 491–498 (2006)

11. Mihaescu, R., Levy, D., Pachter, L.: Why Neighbor-Joining Works. Algorithmica
(2008)

12. Olsen, G.J., Matsuda, H., Hagstrom, R., Overbeek, R.: fastDNAml: A tool for
construction of phylogenetic trees of DNA sequences using maximum likelihood.
Comput. Appl. Biosci. 10, 41–48 (1994)

13. Ota, S., Li, W.H.: NJML: A Hybrid algorithm for the neighbor-joining and maxi-
mum likelihood methods. Molecular Biology and Evolution 17(9), 1401–1409 (2000)

14. Saitou, N., Nei, M.: The neighbor joining method: a new method for reconstructing
phylogenetic trees. Molecular Biology and Evolution 4, 406–425 (1987)

15. Gascuel, O., Steel, M.: Neighbor-joining revealed. Molecular Biology and Evolu-
tion 23, 1997–2000 (2006)

16. Studier, J.A., Keppler, K.J.: A note on the neighbor-joining method of Saitou and
Nei. Molecular Biology and Evolution 5, 729–731 (1988)

17. Yang, Z.: PAML: A program package for phylogenetic analysis by maximum like-
lihood. CABIOS 15, 555–556 (1997)

18. Yang, Z.: Complexity of the simplest phylogenetic estimation problem. Proceedings
of the Royal Society B: Biological Sciences 267, 109–116 (2000)

19. Ziegler, G.: Lectures on Polytopes. Springer, Heidelberg (1995)

Neural Algebra and Consciousness:

A Theory of Structural Functionality
in Neural Nets

Erwin Engeler

Department of Mathematics,
Federal Institute of Technology,

HUT E 31, 8092 Zurich, Switzerland
engeler@math.ethz.ch

http://www.math.ethz.ch/∼engeler

Abstract. Thoughts are spatio-temporal patterns of coalitions of fir-
ing neurons and their interconnections. Neural algebras represent these
patterns as formal algebraic objects, and a suitable composition opera-
tion reflects their interaction. Thus, a neural algebra is associated with
any neural net. The present paper presents this formalization and devel-
ops the basic algebraic tools for formulating and solving the problem of
finding the neural correlates of concepts such as reflection, association,
coordination, etc. The main application is to the notion of consciousness,
whose structural and functional basis is made explicit as the emergence
of a set of solutions to a fixpoint equation.

Keywords: Neural nets, combinatory algebra, functional structures,
emergent properties, models of consciousness.

1 Introduction

Thoughts are patterns of firing neurons. And so are sensory perceptions, memo-
ries, feelings, motor activations, etc. As a population of neurons fires in a pattern
it causes the firing of neurons in another pattern, by its neural connections. Thus
goes a broadly accepted view of the ongoing activity of the brain. The challenge
met by this paper is to find a mathematical framework in which firing patterns
M , N , etc. are the basic elements and their composition M ·N = R describes
how a pattern N which fires in a context M results in a pattern R. Indispensable
for such an approach is that the mathematical objects M , etc. have a transpar-
ent relation to the basic neurological facts behind a spatio-temporal pattern of
firing neurons.

Roughly speaking, each firing pattern is considered as being spread out into
parallel tracks of successively firing individual neurons. Each of these tracks is
understood as being divided into an initial part and a final part: if the track is
part of the spread-out context M and its initial part belongs to N , then its final
part belongs to R = M ·N .

K. Horimoto et al. (Eds.): AB 2008, LNCS 5147, pp. 96–109, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.math.ethz.ch/~engeler

Neural Algebra and Consciousness 97

The goal of this paper is to cast this rough sketch into a mathematical model
and to create the rudiments of a mathematical discipline for it. The proposed
neural algebras provide the needed mathematical framework. It will serve for
treating the problem of relating the functionality of a neural net to its commu-
nication structure in a coherent algebraic fashion.

The examples presented in this paper, in particular our excursion into a theory
of consciousness, are necessarily simplistic, but they should show the spirit of
such applications: the basic mathematical properties of neural algebras are used
to formulate functional-structural problems as equations, and then to solve them
algebraically. In particular we can locate neural correlates to some concepts that
arise as descriptions of brain functions belonging to a higher level of descriptive
language.

2 Neural Algebra

Neural algebras represent sets of neuronal activities – patterns, sequential and
spatial, of firing brain cells. These correspond to neural activities as they would
show up, for example, in sequences of functional MRI images. The formalization
is then used to mirror the composition of such sets – one pattern causing other
patterns – as a formal operation on the corresponding elements of the neural
algebra.

The fascinating development of neurology, (as impressively told by Eric Kan-
del, “In Search of Memory” [11]), has allowed mathematical scientists to try
approximating the anatomical, physiological and biochemical findings by more
or less realistic models, so called artificial neural nets. The early story of these
approaches and their relation to artificial intelligence (“connectionism”) is col-
lected in Anderson and Rosenfeld [1] reaching up to about 1987. There are other
attempts to discuss activities of neural populations mathematically; the most
promising so far is probably the dynamical systems approach; others, based on
quantum mechanics are somewhat less convincing (see, e.g., the discussion in
Koch and Hepp [12]).

Our approach is based on the representation of the activities of neural sub-
populations as formal mathematical objects. Deciding on the level of detail about
the functioning of neurons and their interconnection determines the interpreta-
tion of these expressions. Primarily, a neural net is the directed graph of its
synaptic connections. The weakest description level approximates the function-
ality by providing weights to the synapses and introduces a discrete time behav-
ior of neurons as known from artificial neural nets, familiar for their intuitive
appeal, computational richness and developed theory. Our present exposition
remains at this level; higher levels of detail might include specific biochemical,
and perhaps other mechanisms of communication and distinguish various types
of neurons, and might include stochastic elements.

To fix notation, an artificial neural net is a weighted directed graph, i.e.
a triple (A,L,w), where the set A = {a1, a2, . . . }, which gives the name to
the whole net, is a set of elements called neurons, connected by directed edges

98 E. Engeler

L : L ⊆ A×A to which rational weights are attached by the function w : L→ Q,
abbreviated wi,j = w(〈 ai, aj〉). In an active neural net each neuron ai has at
any time instant t an excitation value f(ai, t) ∈ {0, 1}, t ∈ I, a subinterval of
discrete time I ⊆ Z. These values are interrelated by the structure of the neural
net as follows: If 〈a1, aq〉, . . . , 〈an, aq〉 ∈ L, then

f(aq, t+ 1) = H(Σiwi,qf(ai, t)) ,

where H is a 0− 1 valued function: H(v) = 1 if v ≥ 1, 0 otherwise.
Thus, neurons interact by sending information about their excitation states

at time t along “axons” via “synapses” to other neurons. The synapses weigh
these inputs and the receiving neuron derives from these inputs its excitation
state at time t+1 according to the function H . At any given moment the weights
wi,j attached to the synapse from neuron ai to neuron aj are given constants;
“learning” may change these values, but this is outside the concern of this paper,
although obviously important.

Models somewhat closer to physiological facts than this rather rudimentary
one employ real-valued excitation functions and sigmoid functions H , see, e.g.,
Dehaene et al. [6]. Such models can be incorporated in our approach.

The basic building blocks of our theory are called track expressions, denoted
by lower case symbols x, y, etc. These formal expressions denote the activation
of specific neural connections at specific time instants as follows. For a single
neuron a the expression consists of the symbol a alone. If neurons a1 to ak have
directed edges to neuron a0 and there is a further edge from a0 to ak+1 and t is
any time instant t ∈ Z then

x := {a1, . . . , ak} t−→
a0

ak+1 .

is a track expression if the sum of weights of the incoming edges is at least 1.
The set on the left side may be empty, e.g. in the case that a0 is an “input”

neuron with no incoming edges. The neuron a0 in a sense encodes the activation
of this particular connection, it is therefore called the key neuron of this expres-
sion; formally a0 = ν(x). The upper index t of the arrow indicates the time at
which the key neuron is activated; formally t = τ(x). Any one of the ai, say a1,
may itself be the key neuron of another connection, say

y := {b1, . . . , bs} t−1−−→
a1

bs+1 .

Then {
{b1, . . . , bs}

t−1−−→
a1

bs+1, . . . , ak

}
t−→

a0
ak+1

is also a track expression, still with a0 as its key neuron. More track expressions
are obtained by continuing the method of substitution as in the formal definition
below.

Neural Algebra and Consciousness 99

Let A be any weighted directed graph. We formally define the set of track
expressions x together with their key neurons ν(x) and firing time τ(x) as a set
S(A) of formal elements as follows:

S0(A) = A, ν(x) = x, τ(x) = t for x ∈ A, t ∈ Z
Sn+1(A) = Sn(A) ∪ { {x1, . . . , xk} t−→

a0
xk+1 : if there is an element

a0 ∈ Awith edges from a1, . . . , ap and to aq , such that
τ(x1), . . . , τ(xk) = t− 1, τ(xk+1) = t+ 1 ,
Σiw(ν(xi), a0) ≥ 1 ,
{ν(x1), . . . , ν(xk)} ⊆ {a1, . . . , ap} and
ν(xk+1) = aq, xi ∈ Sn(A), i = 1, . . . , k + 1 } ,

ν({x1, . . . , xk} t−→
a0

xk+1) = a0 ,

τ({x1, . . . , xk} t−→
a0

xk+1) = t .

Then S(A), the set of track expressions, is the union of the Sn(A):

S(A) =
∞⋃

n=0

Sn(A) .

Iterated bracketing of track expressions serves to denote neural activities on
increasingly higher levels of dependency. As theoretical constructs they are in-
troduced to capture the compositionality of firing patterns and to thus facilitate
the construction of an algebraic superstructure on a given neural net, the neural
algebras.

We now come to the formal definition of firing patterns. Let A be a neural
net, considered as a directed graph (equipped with further data in case of higher
level detail as above), and let S(A) be the set of all track expressions. A set M of
track expressions constitutes a firing pattern, if, loosely speaking, it corresponds
to a temporal pattern of firing neurons in A. Formally this means that there
is an assignment of an excitation function f(ai, t) to the set of neurons ai and
firing times t occurring in the track expressions in M such that f(ν(x), τ(x)) = 1
for all track expressions x in M , and such that this assignment conforms to the
firing laws.

Firing patterns are designed to be identified with (mental) functions as their
neural correlates. This rests on the fact that certain subnets can be understood
as having specific functionalities based on them. This singling out of subnets
and firing patterns based on them is a virtual, theoretical, superstructure on
the neural net and is typically guided by hypotheses on their function such as
receiving sensory input or analysing activities based on some other subnet, etc.
Research in neurology has resulted in an enormous and growing knowledge base
of such facts for humans and for some animals.

Our mathematical framework identifies neural correlates as firing patterns;
this makes it possible to capture the compositionality of such neural correlates

100 E. Engeler

quite generally, as follows: Let the neural firing pattern M be based on a sub-
graph AM of A, the support of M . Then M may take account of activities N
supported by subgraph AN and produce activities R, supported by AR.

The activation of N allows the activation of key neurons in M , which in
turn results, due to the structure of M , in the activation of the firing pattern
designated by R. Mathematically this situation corresponds to a composition
operation M ·N = R. Formally, we have the following definition:

M ·N = {x : there is an element {x1, . . . , xk} t−→
a
x in M

such that {x1, . . . , xk} ⊆ N} .

Note that whenever M and N are firing patterns, then so is M ·N . This definition
captures the rôles that the neurons in AM and AN play: Indeed, the neuron a
has an activation history that depends on the histories of ν(x1), . . . , ν(xk) and
influences that of ν(x).

It is in the nature of the things, that R itself may again be an “initiation”
or an “action”, etc. Indeed, each firing pattern can be used as a left multiplier,
representing a law of interaction, or as a right multiplier, representing the input
to the interaction. In this way, the set of firing patterns associated to a neural
net A constitute an algebraic structure, the Neural Algebra NA.

3 Some Mathematical Background

Let A be a neural net. Let F (A) be the set of firing patterns of A; this set is
provided with the composition operation defined in the previous section, thus
constituting an algebraic structure NA = 〈F (A), ·〉. It is in these algebras that
we are to solve the equations describing interactions between neural processes
formulated as firing patterns. Each one of these may of course contain neu-
ral populations that are not used in the composition operation and may, if we
imagine them in nature, be physically far removed except for the overlapping
necessary for the composition.

There are three useful theorems about neural algebras:

Theorem 1 (Fixpoint Theorem). In NA all fixpoint equations have a solution;
the solutions form a lattice by inclusion.

Theorem 2 (Embedding Theorem). NA is a subalgebra of a combinatory alge-
bra, indeed, it is a combinatory algebra for certain nets A.

Theorem 3 (Representation Theorem). If A is a sufficiently rich directed graph
and Φ is a binary relation over B, a subset of A, then Φ is representable in NA

using an embedding f defined by: a and b are in the relation Φ if and only if
f(a) · f(b) = f(b), where f maps B into S(A).

To prove Theorem 1, first note the monotonicity of the algebraic operationM ·N :
If N1 ⊇ N2 then M ·N1 ⊇M ·N2 by the definition of the operation; equally

M1 ·N ⊇ M2 ·N for M1 ⊇ M2. Hence, if ϕ(X) is any algebraic composition of

Neural Algebra and Consciousness 101

X with elements of F (A) then X ′ ⊇ X implies ϕ(X ′) ⊇ ϕ(X). More generally,
if D is a directed set of elements of NA then ϕ(

⋃
D) =

⋃
X∈D ϕ(X). From this

follows, that the fixpoint equation ϕ(X) = X has a least solution
⋃

n ϕ
n(∅),

where ϕ0(X) = X and ϕn+1(X) = ϕ(ϕn(X)).
Namely: ∅ ⊆ ϕ(∅) ⊆ ϕ(ϕ(∅)) ⊆ . . . is a directed set, hence ϕ(

⋃
n ϕ

n(∅)) =⋃
n ϕ

n+1(∅) =
⋃

n ϕ
n(∅); thus

⋃
n ϕ

n(∅) is a fixpoint of ϕ(X). In fact, it is the
smallest fixpoint.

The above solution method for fixpoint equations can be expanded to simul-
taneous equations, e.g. in the case of the coordination problem (finding inputs
that coordinate two activities M and N):

M · P = Q , N ·Q = P .

Given M and N as known, the simultaneous fixpoint equations can be solved in
NA by a generalization of the method for one fixpoint: Let P1 = N · ∅ , Q1 =
M · ∅ , Pn+1 = N ·Qn , Qn+1 = M ·Pn. Then P =

⋃
i Pi , Q =

⋃
i Qi are (least)

solutions.
To simplify exposition, we occasionally drop the firing-time superscripts. We

also may use the same track variables at different ocurrencies in an expression,
the superscripts are thought of being supplied conforming to the actual positions.

To prove Theorem 2, let A be a complete directed graph: each node is con-
nected to all nodes and all edges are weighted 1. Then the neural algebra NA is
a combinatory algebra, which means that it has the property that for any alge-
braic expression ϕ(X1, . . . , Xk) in variables X1, . . . , Xk there exists an element
T in NA for which (. . . ((TM1)M2) . . . Mk) = ϕ(M1, . . . ,Mk) for all values
M1, . . . ,Mk of X1, . . . , Xk. The object T is defined by

T := {(α1 →a1 (α2 →a2 . . . (αk →ak
x))) : x ∈ ϕ(α1, . . . , αk) ,

α1, . . . , αk ⊆ S(A) , finite} .
It is traditionally called the combinator associated to the algebraic expression
ϕ. To verify the case k = 2, consider (TX1)X2 = ϕ(X1, X2) :

(TM1)M2 = {x : ∃α ⊆M1 , ∃β ⊆M2 , (α→a (β →b x)) ∈ T }
= {x : ∃α ⊆M1 , ∃β ⊆M2 , x ∈ ϕ(α, β)} .

The last equation follows from

ϕ(M1,M2) =
⋃
{ϕ(α, β) : α ⊆M1 , β ⊆M2 , α, β finite} .

proving Theorem 2.
The proof of Theorem 3 consists of verifying the following set-recursive defi-

nition of the mapping f , for all a and b in the relation Φ:

f(a) = {a} ∪ {{b} −→a x : b ∈ B, x ∈ f(a)} .

Neural algebras, as we have defined them, are related to combinatory algebras,
as shown above. The latter have evolved from beginnings in mathematical logic,

102 E. Engeler

namely Lambda Calculus and the related Combinatory Logic [2,4]. While these
subjects were created in the 1930’s with the foundations of mathematics as their
aim, they have had considerable influence in theoretical computer science, espe-
cially after Scott and Plotkin constructed their well-known models of the Lambda
Calculus. (For a concise introduction see Engeler [10], Chapter 3.) The basis of
the present work is a richer type of models, the subject of a prolonged effort of the
author and his students at the ETH: “The Combinatory Programme”, [9]. This
research program deals with a large variety of mathematical subjects, including
universal algebra and computer algebra, and later set theory and category theory.

Neural algebras as they arise from natural examples do not have complete
graphs, although they have very large numbers of synaptic connections indeed.
In applications, therefore, the neurons needed for realizing firing patterns like
the T above in the proof of Theorem 2 may have to be obtained by enlarging the
underlying graph A to B; “recruiting new neurons and synapses” as we may say.
Mathematically speaking, this corresponds to an algebraic extension NB of the
original NA which then contains the new element. This is a construction familiar
in algebra, where to solve equations it may be necessary to expand the algebraic
structure, e.g. from rational to algebraic numbers. In natural neural nets, such
expansions may conceivably consist in mobilizing already present but partially
dormant neurons and connections.

The case of concordance of activities is an example: if U and V are two
firing patterns, their intersection U ∩ V describes their functional and temporal
concordance, the extent to which U and V concur. U ∩ V is in fact the result of
applying the operator ∧ on them:

∧UV = (∧ · U) · V = U ∩ V ,

with
∧ = {{x} −→r {{x} −→s x} : x ∈ S(B)} ,

where r and s are two newly recruited neurons. The union of two firing patterns
can be obtained in a similar manner.

The solution of equations other than fixpoint equations is a challenging math-
ematical problem. Indeed, it can be shown that all degrees of computational com-
plexity and of unsolvability can occur. Some solution methods based on algebraic
extensions of a combinatory algebra have been described in Chapter III of [9],
but much work needs to be done and experience gathered from applications.

4 In Search of Consciousness

One possible application of our theory is in the search for neural correlates of
mental functions. Let us turn to the entirely speculative case of “consciousness”,
with the goal of analyzing the well-known thesis that consciousness is the power
of self-reflection. The definition of consciousness as self-reflection is just one of
a long and involved history of attempts to define this concept. In this, we are
well aware of the caveat of Francis Crick: “Until the problem [of consciousness]

Neural Algebra and Consciousness 103

is understood much better, any attempt at a formal definition is likely to be
either misleading or overly restrictive, or both,” [3]. For one thing, the sheer size
and complexity of that network precludes any complete analysis. More funda-
mentally: There can be no effective method to decide whether a neural net, once
initiated, will develop a given response. (This can easily be shown by simulating
Turing Machines in neural nets).

However, it is quite possible to work out attributions of content and function
to types of neural structures; in the case of consciousness this results in the
Structure Theorem below.

Let us then understand neural consciousness as the ability of a neural netB (“the
brain”) to consciously observe itself as being conscious and as consciously planning
and acting. These abilities are embodied as activities in sub-populations of the
“brain”, to be represented here by firing patterns; their interrelation is expressed
by their composition: If C is the firing pattern corresponding to “consciousness”,
andM1,M2, etc. are the firing patterns corresponding to the context of observing,
acting, planning, moving, etc. thenM1 ·C,M2 ·C, etc. are the results of observing,
acting, etc. as dependent on consciousness. To the sum of these results, together
with C itself, C is again applied. Translated into neural algebra, our definition of
consciousness transforms into an equation of the form

C ·
(
C ∪

⋃
i

Mi · C
)

= C .

The solutions of this fixpoint equation constitute the set of persistent activity
patterns in a net of neurons that may be understood as states of “consciousness”.
(The apparent circularity of our non-formal definition thus resolves itself as
multiple entry of the unknown in a single equation).

Obviously, the quality of consciousness in this formal sense depends crucially
on the size and structure of the underlying “brain” and on the degree of involve-
ment of other brain functions, such as memory, language, intentionality. This
is reflected in the fact that different such activity patterns are (lattice-)ordered
by inclusion and correspond to to different forms or to emerging stages of con-
sciousness. Thus, forms of consciousness may already be found in neural nets of
primitive animals, and indeed even in neural simulations of computers.

Basically, our results say that consciousness is always based on one or more
recurrent loops of active neurons and feeds forward from these to other activated
regions of the brain; patterns that are solely based on stimulus-and-response
cannot support consciousness. The various forms of consciousness depend in this
way on the richness and the activity of the mind as embodied in the neural net
constituting the brain.

4.1 The Structural Basis of Consciousness

To obtain the structural basis of consciousness, we solve the fixpoint equation
structurally, which means that we “disregard time”. Formally, this means that

{x −→
a1

y : x ∈ A3, y ∈ A2}

104 E. Engeler

is to be read as
{x t−→

a1
y : x ∈ A3, y ∈ A2, t ∈ Z} .

Computing consciousness fixpoints shows up the structural facts that are relevant
in all models of the brain. We observe the following facts:

Theorem 4 (Structure Theorem of Consciousness)
(a) Consciousness always has a base in one or more cycles of the directed graph.
(b) Consciousness can be expanded along any outgoing edge.
(c) Consciousness never expands backwards into cycle free “stimulus and re-

sponse” subgraphs.

To prove (a) consider the simple case of a cycle of neurons a1, a2, a3, cyclically
connected with weights 1. Assume this cycle embedded in a graph with an edge
of weight 1 leading from a neuron b to a1, and one from a3 to a neuron c, again
with weight 1.

Let
A1 = {a1} ∪ {x −→

a1
y : x ∈ A3, y ∈ A2} ,

A2 = {a2} ∪ {x −→
a2

y : x ∈ A1, y ∈ A3} ,
A3 = {a3} ∪ {x −→

a3
y : x ∈ A2, y ∈ A1} ,

C = A1 ∪A2 ∪A3 ,
B = C ∪ {b −→

a1
y : y ∈ A2} ∪ {x −→

a3
c : x ∈ A2} .

Then
C · C = A1 · C ∪A2 · C ∪A3 · C = C ,

and
B · C = C · C ∪ ∅ ∪ {c} .

Hence
C · (C ∪B · C) = C · (C ∪ {c}) = C · C = C .

Items (b) and (c) can be as easily proved: (b) is exemplified by extending C to
C′ = C ∪ {x −→

a3
c : x ∈ A2}; (c) by observing that C = C ∪ {b −→

a1
y : y ∈ A2}

is not a fixpoint.

4.2 The Emergence of Consciousness

Consciousness “simply happens” in any sufficiently rich neural net. It is a typical
example of an emerging phenomenon. Mathematically, emergence consists in the
approximation of a fixpoint: Assume that we already have a fixpoint C (the
empty set ∅ is always available), and let E extend C and N extend M . Using E
and N we can gradually progress to a new fixpoint C′ as follows:

Define ϕY (X) = X · (X ∪ Y ·X) and observe
ϕM (C) = C ⊆ E ⊆ ϕN (E) ⊆ ϕN (ϕN (E)) ⊆ . . . is a directed set, hence

ϕN (
⋃

n ϕ
n
N (E)) =

⋃
n ϕ

n+1
N (E) =

⋃
n ϕ

n
N (E); thus C′ =

⋃
n ϕ

n
N (E) is a fixpoint

of ϕN (X).

Neural Algebra and Consciousness 105

Fig. 1. A cycle of consciousness

For a somewhat plausible example, imagine a chess player whose sensory system
provides him with the positions in the game, upon which his planning faculty
decides on a plan, e.g. a particular endgame. The action coordination deter-
mines the first move, which the motorics of the player transforms into moving
a particular piece. There follow updates of the planner about that move and to
remember to wait for the challenge for his next move.

Using this context as a guide, consider a microbrain NB, the neural algebra
over the directed graph B, representing the neural substrate which supports
firing patterns which we name, to fix ideas, I for sensory input, V for vision, P
for perception and planning, A for activation of actions, M for motor activity, L
for language, S for speech, H for body perception. In our microbrain, these firing
patterns have as key neurons just one neuron each, namely i, v, p, a,m, l, s, h,
connected and weighted according to the diagram in Figure 2. The structural
laws for the firing patterns of NB can be read off the diagram in Figure 2 as
follows in the form of simultaneous recurrence equations:

H = {h} ∪ {x −→h y, x −→h z : x, y ∈ H, z ∈ A}
A = {a} ∪ {x −→a y, x −→a z, u −→a z, {x, u} −→a z1, {x, u} −→a z2

: u ∈ H,x, y ∈ P, z1 ∈M, z2 ∈ L}
M = {m} ∪ {x −→m y : x ∈ A, y ∈ V }

V = {v} ∪ {x −→v y, z −→v y, {x, z} −→v y : x ∈M, y ∈ P, z ∈ I}
P = {p} ∪ {x −→p y, z −→p y, z −→p u, x −→p u : x, y ∈ A, z ∈ V, u ∈ L}

L = {l} ∪ {x −→l z, y −→l z, {x, y} −→l z : x ∈ P, y ∈ A, z ∈ S}
I = {i}, S = {s}

106 E. Engeler

Fig. 2. The microbrain NB and its scores

The consciousness equation will admit at least one but conceivably many solu-
tions in NB. Expanding them, as suggested by emergence, may add further ones.

The minimal solution is, of course, the empty set ∅, since ∅ ·X is the empty
set for all X .

A first nontrivial solution is C0 := H0 “the brain may only be conscious of
the beating heart”. Let, again recursively,

H0 = {h} ∪ {h : x −→h y : x, y ∈ H0} .

To verify that H0 supported by the cyclic subgraph on the neuron h is indeed a
fixpoint follows at once from (a). Other fixpoints follow as consequences of (b)
and (c).

As observed above, consciousness-fixpoints in NB form a lattice under the
inclusion relation and are as a rule not all ordered in one sequence. They are
best described by the supporting subgraphs of these patterns, e.g.

C1 = A1 ∪ P1 ∪H1 ,

based on key neurons h, a and p, where

A1 = {a} ∪ {{x, y} −→a z : y, z ∈ P1, x ∈ H1} ,
P1 = {p} ∪ {x −→p y : x, y ∈ A1} ,

H1 = {h} ∪ {x −→h y, x −→h z : x, y ∈ H, z ∈ A1} .

Neural Algebra and Consciousness 107

Remaining with microbrains, we may also incorporate other ideas about the
functioning of the brain. For example, we may interpolate a neuron w between
p and v, which makes the system “watch out” for particular input. Or we may
establish an edge between v and m for immediate reactive movements, etc.

Even in rudimentary neural algebras such as NB , there develops a rich variety
of conscious behavior. The activation history of such a net may be looked at as
a sort of musical score for the “theme” that the brain plays, see Figure 2 for an
example. The activation of neurons on which consciousness is based is shown at
the top of the score, the bottom would be something like (relative) subconscious.

Visualization of consciousness as “a sort of orchestral piece played in the
brain” points out a connection with the findings of the school of Wolf Singer
(e.g. [8]), which shows the central importance of synchronicity. It also shows
the importance of the persistence of activation patterns for the constitution of
a sustained consciousness, the “self” in a “sin-phonic” view, possibly with a
recognizable personal “style”.

5 Discussion

To belabor the obvious: as a model of the human brain, the microbrain NB is
unrealistic by about twelve orders of magnitude; the neuron v for example stands
for something like the visual cortex, and m may be a cascade of interrelated
neural nets, etc.

However, our findings about the existence of the lattice of consciousness ac-
tivity complexes scale up to “brains” of all levels of complexity, and we may
speculate, whether “core consciousness” and levels of “extended consciousness”,
as described in the literature (e.g. by [5]), correspond to such fixpoints. Also,
we may speculate about the history of activations of these different forms of
consciousness and whether this might involve moving up from body-awareness
such as C1 based on lower fixpoints to higher fixpoints. Experiences by intro-
spection might just be based on such migrations, which, by the way, may have
to move through higher or lower points in the lattice to reach from one to the
other. Other such experiences (e.g. so-called “earworms” of popular melodies),
as well as observations on periodicities of brain activities in observed conscious
behaviors, seem to match the musical-score paradigm of brain activity.

In neural algebra, thoughts, emotions, communication, etc., are just elements
to be computed with, this is all there is, formally. Remaining with the musical
score paradigm, the notes of a Mozart piece would analogously be all there is!
But, far from formality being an impoverishment of these concepts, the mathe-
matical approach presents an unending challenge, of which we now sketch only
a few immediate aspects.

5.1 On Laws of Thought

When Boole created an algebraic discipline for computing with truth values of
statements, “thoughts” were understood as being expressed in language, and

108 E. Engeler

parts of the grammar of language provided the patterns of the algebraic oper-
ations. Should we not now take firing patterns as “thoughts” and their compo-
sition as the algebraic operations? This results, abstracting from the unknown
complexities of human neural algebras, in a position which we could call neural
logic, regarding neural algebra as the true algebra of thoughts.

If we aim to understand mental activities as compositions of firing patterns,
there are several basic concepts that need neural correlates. Further research
would have to show, whether, for example, the following proposals have a chance:

(a) To classify a firing pattern X as conforming to a template F , as in recog-
nizing a face, we could simply compose the two and consider the result as
indicating in what, and how far, the classification holds true. Or, taking
the basic idea from the Representation Theorem 3, we might identify true
classification with F ·X = X .

(b) In Theorem 2 it is shown that complex composition patterns of objects can
be considered as objects in a combinatory algebra. In the present context,
we might consider the notion of analogy as a particular firing pattern, say
L. Then L expresses the fact that the notion X is to the leading example
U as it is to the analogon V , thus:

LXUV = ∧ · (X · U) · (X · V) ,

using the intersection operator from Section 3.
(c) Combinatory algebra has objects that correspond to natural numbers and

to computing with them; our model of the brain inherits this. Although
this shows that a rich enough NB can handle all computable functions, and
indeed simulate any Turing machine, it is implausible that the published
versions of arithmetic in combinatory algebra (as in [10]) are the ones re-
alized in the human brain, (cf., for example, Dehaene [7] on numerosity).
More generally, “intelligence” may be closely related to the easy availability
of combinatory objects, templates, which represent basic forms of related-
ness, such as analogy, causality, duality, etc.

5.2 Extended and Collective Consciousness

In Section 4 we have taken the simplest case of composition of “consciousness”
with the structure of the mind, namely

C ·
(
C ∪

⋃
i

Mi · C
)

= C .

The “mind” M =
⋃

i Mi may allow artificial extensions M ′ ⊃ M , which may
conceivably induce an extension of consciousness. The use of tools “till they
become a part of ourselves” is a striking example. In designing tools, e.g. software
tools, it may therefore be of interest to keep in mind the neural connections that
we have identified with the structural functioning of consciousness.

Neural Algebra and Consciousness 109

There is no reason to restrict the present approach to neural nets that are
“brains”. Equally well we could consider populations of agents, for example a
colony of ants, that operate under certain constraints and with certain well-
defined schemes of communication. Thus would emerge concepts of collective
consciousness for such populations; and it would be attractive to try and develop
this idea in a variety of contexts. In a similar vain, the human brain itself is in
fact a population of such individual agents, neurons, whose collaboration may
have evolved by a learning process, including the recruitment of new members
and new connections.

Acknowledgments. I wish to express my thanks to Klaus Hepp, who chal-
lenged me on my bold statements that I knew “the right mathematics for mod-
elling the brain and consciousness.” In consequence, the present approach was
worked out and presented in a preliminary form at the “Brain Fair Zurich” in
2005. Of course, all responsibilities for this work remain mine.

References

1. Anderson, J.A., Rosenfeld, E.: Neurocomputing. MIT Press, Cambridge (1988)
2. Church, A.: A Set of Postulates for the Foundations of Logic. Annals of Math. 33,

346–366 (1932)
3. Crick, F.: The Astonishing Hypothesis. Simon & Schuster, Ltd (1994)
4. Curry, H.B.: Grundlagen der Kombinatorischen Logik. Amer. J. of Math. 52, 509–

536, 789–834 (1929)
5. Parvizi, J., Damasio, A.: Consciousness and the Brainstem. Cognition 79, 135–159

(2001)
6. Dehaene, St., Sergent, C., Changeux, J.-P.: A Neural Network Model Linking Sub-

jective Reports and Objective Physiological Date During Conscious Perception.
Proc. Nat. Acad. Sci. 100, 8520–8525 (2003)

7. Dehaene, St., Molko, N., Cohen, L., Wilson, A.J.: Arithmetic and the Brain. Cur-
rent Opinion in Neurobiology 14, 218–224 (2004)

8. Engel, A.K., Fries, P., Singer, W.: Dynamic Predictions and Synchronicity. Nature
Reviews Neuroscience 2, 704–716 (2001)

9. Engeler, E., Aberer, K., Gloor, O., von Mohrenschildt, M., Otth, D., Schwärzler,
T., Weibel, T.: The Combinatory Programme. Birkhäuser, Boston (1995),
http://www.math.ethz.ch/∼engeler

10. Engeler, E.: Foundations of Mathematics, ch.3. Springer, New York (1983) also in
Russian, Chinese and German

11. Kandel, E.R.: In Search of Memory, Norton New York (2006)
12. Koch, C., Hepp, K.: Quantum Mechanics in the Brain. Nature 40, 1011–1012 (2006)

http://www.math.ethz.ch/~engeler

An Algorithm for Qualitative Simulation of Gene
Regulatory Networks with Steep Sigmoidal Response

Functions

Liliana Ironi1, Luigi Panzeri1, and Erik Plahte2

1 IMATI - CNR, via Ferrata 1, 27100 Pavia, Italy
2 CIGENE (Centre for Integrative Genetics) and Department of Mathematical Sciences and
Technology, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 As, Norway

Abstract. A specific class of ODEs has been shown to be adequate to describe the
essential features of the complex dynamics of Gene-Regulatory Networks (GRN).
But, the effective exploitation of such models to predict the dynamics of specific
GRNs by classical numerical schemes is greatly hampered by the current lack
of precise and quantitative information on regulation mechanisms and kinetic
parameters. Due to the size and complexity of large GRNs, classical qualitative
analysis could be very hard, or even impracticable, to be carried out by hand,
and conventional qualitative simulation approaches rapidly lead to an exponen-
tial growth of the generated behavior tree that, besides all possible sound behav-
iors, may also contain spurious ones. This paper discusses the work-in-progress
of a research effort aiming at the design and implementation of a computational
framework for qualitative simulation of the dynamics of a class of ODE models
of GRNs. The algorithm we propose results from a set of symbolic computation
algorithms that carry out the integration of qualitative reasoning techniques with
singular perturbation analysis methods. The former techniques allow us to cope
with uncertain and incomplete knowledge whereas the latter ones lay the math-
ematical groundwork for a sound and complete algorithm capable to deal with
regulation processes that occur at different time scales.

Keywords: Gene regulatory network, qualitative simulation, singular perturba-
tion analysis.

1 Introduction

A variety of modeling formalisms, ranging from directed graphs over Boolean networks
to differential models, ordinary and partial differential equations, along with related
simulation algorithms have been applied to study gene regulatory systems as demon-
strated by a rich literature, and discussed in several monographs and survey papers. The
mathematical aspects of such approaches, and the evaluation of their relative strengths
and weaknesses are discussed in [1].

A growing number of theoretical as well as experimental papers show that gene reg-
ulation is threshold-dependent, i.e. only effective above or below a certain threshold.
ODE models with switch-like interaction terms allow us to provide detailed descrip-
tions of gene regulatory mechanisms at the molecular level [2], and, in theory, they

K. Horimoto et al. (Eds.): AB 2008, LNCS 5147, pp. 110–124, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Algorithm for Qualitative Simulation of Gene Regulatory Networks 111

could be used to make numerical predictions of the network behavior and its response
to environmental stimuli. But, in practice, even when the system at hand is very well
studied, their exploitation meets several obstacles: (i) models are often large, complex
and above all, nonlinear, and traditional pen and paper analysis could be inadequate or
too time-consuming; (ii) numerical simulations are seriously hampered by the current
lack of precise and quantitative information on the biochemical reaction mechanisms
underlying regulatory interactions, kinetic parameters and threshold concentrations.

The qualitative analysis and simulation of the dynamics of GRNs is a rather appro-
priate solution as, in the current state of knowledge, the key issue is to understand how
specific activity patterns derive from given network structures, and what different types
of dynamical behaviors are possible. However, due to the complexity of GRN models,
to carry out analytically a complete qualitative study of their dynamics might be very
hard, or even impracticable. Nor is the recourse to conventional qualitative simulation
approaches [3], developed within the Artificial Intelligence research framework to cope
with the need to represent and predict the dynamics of systems characterized by in-
complete knowledge, an appropriate solution. Such approaches can deal with generic
classes of dynamical systems, and generate, starting from an initial system state, the
whole range of system dynamics. Each qualitative behavior is generated by applying
transition rules that are grounded on mathematical tools actually too simple to compen-
sate for the lack of complete knowledge. This results in a number of drawbacks, e.g.
their inability to upscalability, the exponential growth of the generated behaviors, and
the generation of spurious behaviors, that reveal to be particularly serious in predicting
nonlinear dynamics of regulatory networks even in the case of networks with a small
number of interacting genes. Thus, the need for the development of ad hoc computa-
tional frameworks for qualitative analysis and simulation of GRN models.

A first effort in this direction is given by a qualitative simulator, called GNA [4]. It is
based on the integration of Qualitative Reasoning (QR) concepts [3] and control theory
methods to cope with both incomplete knowledge and threshold-dependent regulation
mechanisms. GNA assumes that threshold-regulated response functions are step func-
tions, discontinuous in the threshold hyperplanes. On the one hand, such an assumption
considerably simplifies the analysis as the model results in piecewise-linear equations.
On the other hand, it raises the problem to find a proper continuous solution across the
threshold hyperplanes, or, in other word, to seek for generalized solutions of ODEs with
discontinuous right-side terms. Among the possible definitions of generalized solutions,
GNA adopts the Filippov one [5], that is quite popular and convenient in a control con-
text, but may fail when applied to approximate the limit solutions of a continuous model.
This together with a further approximation introduced in the GNA algorithm for compu-
tational purposes might not always guarantee its soundness and completeness [6].

These problems are avoided if the response functions are sigmoidal and vary contin-
uously from zero to one with a steep rise around the threshold. The ensuing dynamics
is both linear and nonlinear with different time scales, but has been analysed using sin-
gular perturbation theory [7]. Here we present a qualitative simulation algorithm for
models with steep sigmoid response functions based on this work. Despite an incom-
plete knowledge of parameter values, we construct all possible trajectories and their
associated parameter space domains, starting from an initial state and parameter space

112 L. Ironi, L. Panzeri, and E. Plahte

domain, by using QR key concepts suitably revised, and by iteratively exploiting sym-
bolic computation procedures.

2 A Modeling Framework for the Study of GRN Dynamics

Recent experimental findings as well as theoretical justifications (see [8] for references)
seem to support the following generic and phenomenological dynamic model for a GRN:

ẋi = fi(Z) − γixi, (1)

where the dot denotes time derivative, xi is the concentration of gene product number
i, i = 1, . . . , n, γi is the relative decay rate of xi, Z is a vector with Zjk as components,
andZjk = S(xj , θjk, q) is a sigmoid or binary (i.e. Heaviside or step) response function
with threshold θjk and steepness parameter q. The thresholds associated with each xi

are ordered according to θij < θik if j < k. Finally, x(t,x0, q) is the solution satisfying
the initial condition x(0,x0, q) = x0.

The differentiable functions fi are regulatory production functions, frequently com-
posed by algebraic equivalents of Boolean functions [9]. Eq. (1) is assumed to catch the
essential features of a wide range of regulatory systems, where the regulatory control
may be at the level of transcription, mRNA stability, translation, or post-translation. The
state variables may be concentrations of proteins, hormones, mRNA, and intracellular
ions [10]. The framework has been applied to model real world networks: the initiation
of sporulation in B. subtilis [11], and the response to nutritional stress and carbon star-
vation in E. coli [12,13], using Heaviside response functions. We assume the sigmoid
functions are very steep Hill functions, viz. S(x, θ, q) = x1/q/(x1/q + θ1/q), where
0 < q � 1. Under a number of reasonable assumptions a solution x(t,x0, q) of Eq. (1)
starting in an arbitrary initial point x0 at t = 0 can be uniformly approximated by the
zero order solution x(t,x0, 0). The derivation is based on singular perturbation theory.

Eq. (1) could be applied to GRNs of any size and complexity, and the generic anal-
ysis developed in [7,14] is fully applicable to networks of any size. However, as the
network becomes large, there is a combinatorial explosion of phase-space domains and
parameter combinations that need to be investigated, and a computerized, algorithmic
approach becomes a necessity. That is the first motivation for the present work. Our
second motivation is that sigmoidal response functions in many cases are more realistic
than step functions, and could be preferred for modeling real systems.

Regular and Singular Stationary Points. The threshold hyperplanes xi = θij divide
phase-space into regular and switching domains. A regular domain DR (also called a
box) is an open rectangular domain between threshold planes in which the values of all
sigmoids are close to 0 or 1. In a box we put Zij = Bij . In a switching domain DS the
xi are divided into two disjoint sets: the switching variables xs and the regular variables
xr, s ∈ S, r ∈ R, where S ∪ R = N = {1, 2, . . . , n}. A xs is very close to one of its
thresholds, while a xr lies in the open domain between two adjacent thresholds. Thus, a
switching domain is a narrow boundary layer surrounding a section of a threshold plane
or an intersection of threshold planes. The union of all the regular domains is denoted
∆R, while ∆S is the union of all the switching domains, and ∆ = ∆R ∪∆S .

An Algorithm for Qualitative Simulation of Gene Regulatory Networks 113

A stationary point P(q) is called a regular stationary point (RSP) if it is located in
a box, and a singular stationary point (SSP) if it is located in a switching domain. The
zero order approximation P0 of a RSP P(q) is a solution of fi(B) − γixi = 0, i ∈ N ,
where B represent the Boolean values of the Z-variables. This is trivial to solve for
each B. A RSP is always asymptotically stable.

If a SSP exists in a DS , it is in lowest order found as the solution P∗ = (x∗r , θs) of

fr(Br, Zs)− γrxr = 0, r ∈ R,
fs(Br, Zs)− γsθs = 0, s ∈ S.

(2)

In the following we make the apparently realistic and simplifying

Assumption A. Every xi only regulates one gene at each of its thresholds.

Because each Zij then only occurs in a single rate function, the second of Eqs. (2),
which would otherwise represent a set of polynomial equations that could be very hard
to solve, is reduced to a set of linear equations. Then, there is at most a single stationary
point P∗ in each DS . A necessary condition for a solution of the second equation is
that there is precisely one Z-term in each equation and that these terms produce a non-
singular Jacobian matrix Js = ∂fs/∂Zs. These Jacobian elements form a loop L with
loop productL. A suitable renumbering leads to a block-diagonal Js, where each block
is a permutation matrix associated with a sub-loop Lj of L. Then the characteristic
equation |Js − λI| = 0 is

m∏
j=1

(
(−λ)l(j) + Lj

)
= 0 (3)

where m is the number of sub-loops of Js, l(j) is the length of Lj and Lj is the loop
product of Lj . It follows that P∗ has no eigenvalues with positive real part and is stable
iff (i) l(j) = 1 or l(j) = 2 for all j, (ii) Lj < 0 for j = 1, (iii) Lj > 0 for j = 2, the
latter case occuring if there is a negative loop among the two variables, giving a pair of
imaginary eigenvalues. All other cases will give an eigenvalue with a positive real part.

Thus, when the SSP is stable, we only encounter all eigenvalues with negative real
part in the very special case when Js is diagonal with only negative diagonal elements.
If some l(j) = 2, we get a pair of purely imaginary eigenvalues. This causes a problem,
because the standard proof of the validity of the singular perturbation approximation
requires eigenvalues with negative real parts. This remains to be investigated. However,
numerical simulations indicate that singular perturbation should work also in this case.

Dynamical Behavior. In a box all xi are regular, and in the step function limit the
solutions approach the solutions of

ẋr = fr(B)− γrxr. (4)

In a switching domainDS where xs = θs,sj , the rapid motion of the switching variables
is described by

Z ′
s,sj

= Ds,sj [fs(Br, Zs,sj)− γsθs,sj], (5)

where Ds,sj = Zs,sj (1 − Zs,sj)/θs,sj stems from the derivative of the Hill function,
and the prime denotes differentiation with respect to τ = t/q.

114 L. Ironi, L. Panzeri, and E. Plahte

If Eq. (5) has no stationary and asymptotically stable solution Z∗
s,sj

∈ (0, 1)σ,
where σ = |S|, the system just passes through DS and leaves (0, 1)σ in an exit point at
the boundary, with no change in the regular variables. Otherwise, the Z-variables come
to rest in the exit point Z∗

s,sj
, and the slow motion of the regular variables xr in this DS

is described by the linear and independent equations

ẋr = fr(Br, Z
∗
s,sj

)− γrxr ,

Zs,sj = Z∗
s,sj

,
(6)

until a stable state is reached or the solution leaves DS and passes into an adjacent
switching domain. In the singular perturbation language, Eq. (5) is called the boundary
layer equation and Eq. (6) the reduced equation.

The phase space of Eq. (5) is confined to the so-called Z-cube Z(DS) = [0, 1]σ as-
sociated with DS . In the limit q → 0, the interior of the Z-cube describes the motion of
the singularZ-variables, while the faces describe the switching variables in the adjacent
switching domains, and the vertices represent the adjacent boxes [14]. Each Z-cube has
a set of entrance and exit points where trajectories can enter, respectively exit from, the
interior of the Z-cube. An entrance point is also an exit point of an adjacent domain, so
we will only need exit points. An exit point can be located on the boundary of the cube
or be an internal point.

According to singular perturbation theory [15], the solutions of Eqs. (5,6) taken to-
gether approximate the exact solution in DS for q close to zero, i.e. for steep sigmoids
[7]. One just has to express xs by the solution Zs,sj (τ) and replace τ by t/q. For each
switching domain DS there is essentially only one problem: to determine the exit point
Z∗

s where the trajectory leaves DS or the system comes to rest. The details of the mo-
tion of the Z-variables are not important as they only occur in a narrow part of phase
space and in a negligible time span. Using this approach, we can construct a solution
starting in an arbitrary initial point x0 at t = 0 through any finite sequence of regular
and switching domains by supplying Eqs. (4-6), solved for each domain encountered,
with initial conditions which ensure a continuous trajectory. This zero order solution
x(t,x0, 0) is then a uniform approximation to x(t,x0, q) for 0 < q � 1. This is the
theoretical basis for the algorithm to be described below.

3 Qualitative Simulation of GRN Models

Our work aims at the development of a qualitative simulation algorithm based on so-
phisticated mathematical tools, and specifically tailored to capture network dynamical
properties that are invariant for ranges of values of kinetic parameters. To this end, in the
following we revise and ad hoc tailor the key concepts underlying qualitative simulation
algorithms to our specific class of models.

Qualitative Value. The partition of the whole system domain, induced by the ordered
sets, Θi, of the ni symbolic threshold values θij associated with each xi, identifies
qualitatively distinct n-dimensional hyper-rectangles D that define the system qualita-
tive values. Let us observe that, to characterize switching domains, instead of the sharp
value θij , we consider a range of values around it, whose width, δ > 0, is a monotonic

An Algorithm for Qualitative Simulation of Gene Regulatory Networks 115

function of the steepness parameter q with δ(q)→ 0 for q → 0. Let us denote by θij and
θij the values θij−δ/2 and θij +δ/2, respectively. Then, eachD results from the prod-
uct of intervals, either all open, (θij , θi(j+1)), or at least one closed, [θi(j+1), θi(j+1)].

Qualitative State. Let A(D) be the set of domains adjacent to D ∈ ∆. The qualitative
state of D, QS(D) = {Dk | Dk ∈ A(D), D → Dk}, is defined by all of its adjacent
domains Dk towards which a transition from it is possible. Each transition from D
identifies a domain next traversed by a system trajectory. More precisely, if we number
by i the domain D traversed at time ti, each of its successors Dk ∈ QS(D) will be
traversed by different trajectories at time ti+1.

State Transitions. The possible transitions from D are determined by different strate-
gies according to whether D ∈ ∆R or D ∈ ∆S . In the former case, like in traditional
QR methods and in GNA [4], transitions are determined by the signs of ẋi. As ẋi are
defined by linear expressions, such signs are easily determined by exploiting the in-
equalities that define the parameter space domain, and constrain the RSPs to belong
to specific domains. In the case, D ∈ ∆S , a sign-based strategy is not practicable as
the expressions for ẋi are nonlinear. A convenient way to proceed is given by singular
perturbation analysis: transitions from D towards adjacent Dk are determined by the
locations of its exit points that can be either on (i) the boundary of D or in (ii) its inte-
rior. Except in the case (ii), the number of exit points may be greater than one. Then, in
general, the successors of D are not uniquely determined. But, through symbolic com-
putation procedures, it is possible to calculate the set of inequalities, Ii

j , on parameters
that hold when a transition from Di to Dj occurs. Then, each path from Di to Dj is
clearly identified by the 3-tuple 〈Di, Dj, I

i
j〉.

Qualitative Behavior. A finite sequence of paths, where each path is clearly both linked
and consistent with its predecessor and successor, defines a qualitative behavior:

QB = 〈D0, I0〉, 〈D0, D1, I
0
1 〉, . . . , 〈Dk, Di, I

k
i 〉, . . . , 〈DF , IF 〉, where D0 is the initial

domain, and DF either contains a stable fixed point or identifies a cycle, i.e it is an
already visited domain. I0 is the initial set of inequalities that defines the parameter
space domain, and IF the set of inequalities on parameter values associated with DF .

3.1 The Simulation Algorithm

Given as input, (i) n symbolic state equations of the form (1); (ii) n ordered sets
Θi = {θij}; (iii) an initial domain D0 ∈ ∆; (iv) a set of symbolic inequalities I0 on
parameter values defining a parameter space domain PSD0, the simulation algorithm
generates all possible state transitions, and represents them by a directed tree rooted
in D0, BT(D0). In such a tree the vertices correspond to Di, and the arcs, labeled by
the inequalities Ii

j , to the transitions from Di to Dj . Each branch in BT(D0) defines a
qualitative trajectory from D0, that occurs when the values of parameters satisfy its re-
lated inequalities. Such a trajectory is characterized by the traverse of specific domains,
and abstracts all those numeric solutions of the ODE, obtained with different values of
either the initial condition x0 ∈ D0 or parameters, that cross the same domains. The
main steps of the algorithm, sketched in Fig. 1, are summarized below:

116 L. Ironi, L. Panzeri, and E. Plahte

1. Partition the phase space into regular and switching domains.
2. Calculate the qualitative state QS(Di) of the current domain Di.
3. Determine constraints Ii

k on parameters for each path eik = Di → Dk, where
Dk ∈ QS(Di).

4. Append 〈Di, Dk, I
i
k〉 to BT(D0) if Ii

k are consistent with the initial constraints I0,
and mark Di as visited domain.

5. Repeat from step 2 for each Dk.

In the following we detail step 2, that is the core of the algorithm.

Fig. 1. Main steps of the simulation algorithm

3.2 Calculation of the Qualitative State

The calculation of the qualitative state requires two separate algorithms to implement
the different strategies adopted according to whether Di∈∆R or Di∈∆S . Both algo-
rithms calculate the conditions on parameters Ii

k that are consistent with I0,

An Algorithm for Qualitative Simulation of Gene Regulatory Networks 117

∀Dk ∈ QS(Di). Let us define Ii
k consistent with I0 when it defines a not empty pa-

rameter space domain PSDi
k such that PSDi

k ⊆ PSD0. Furthermore, we define the
relative position of D1 with respect to D2, indicated by V (D1, D2) = {vj}nj=1 where
vj ∈ {−1, 0, 1}, by the comparison of the intervals defining D1 and D2.

Transition from a Regular Domain (Algorithm 1). The algorithm that constructs the
possible paths from regular domains is, in principle, similar to that one proposed by GNA,
but it is more informative as it calculates the Ii

ks. From now on, for the sake of simplicity,
we indicate the two consecutive thresholds θji, θj(i+1) by θj , θ

′
j . Then, letDi be defined

by Di =
∏n

j=1(θj , θ
′
j). In outline, the algorithm performs the following steps:

1. CalculateA(Di) and state equations inDi. The algorithm calculates the setA(Di),
the symbolic state equations in Di, and the focal point x∗ towards which all trajec-
tories head when t→∞.

2. Calculate Ii
k and possible transitions. ∀Dk ∈ A(Di), the algorithm calculates the

set of inequalities on parameters Ii
k that need to be fulfilled to have a transition from

Di to Dk. As all the equations are linear in Di, such inequalities are calculated by
imposing that the signs of state variable rates match the relative position ofDk with
Di. Let V (Dk, Di) = {vj}nj=1 be the relative position of Dk with respect to Di.

Ii
k is given, ∀j ∈ {1, . . . , n}, by either the inequality x∗j > θ

′
j if vj = 1 or x∗j < θj

if vj = −1. Thus, if the calculated inequality set defines a not empty parameter
space domain PSDi

k ⊆ PSD0, then a transition towards Dk is possible and the
qualitative state QS(Di) is updated accordingly.

3. Check the existence of a RSP in Di. A stable point RSP exists in Di, i.e. Di ∈
QS(Di), if P̃ SD ⊆ PSD0 and P̃ SD �= ∅, where P̃ SD is a parameter space
domain defined by the set of inequalities θj < x∗j < θ′j , ∀j ∈ {1, . . . , n}.

Algorithm 1. Calculate QS(Di) for Regular Domain

1: Set Ii
k ← I0

2: for all Dk ∈ A(Di) do
3: Calculate V (Dk, Di) = {vj}n

j=1

4: for j = 1 to n do
5: Calculate the symbolic state equation in Di and its stationary solution x∗

j ;
6: Update:

Ii
k ← Ii

k ∧
�

(x∗
j > θ

′
j) if vj = 1

(x∗
j < θj) if vj = −1

7: if PSDi
k �= ∅ then

8: Append Dk to QS(Di) and label the path Di → Dk by Ii
k.

9: Append Di to QS(Di) if P̃ SD ⊆ PSD0 and P̃ SD �= ∅, where P̃ SD is a parameter space
domain defined by the set of inequalities {(θj < x∗

j < θ′
j) ∀j ∈ {1, . . . , n}

Transition from a Switching Domain (Algorithm 2). The nonlinear dynamics in a
switching domainDi is characterized by fast and slow motions, respectively associated
with xs and xr that are independently calculated.

118 L. Ironi, L. Panzeri, and E. Plahte

Algorithm 2. Calculate QS(Di) for a Switching Domain
1: Initialize EP ← ∅
2: Calculate symbolically the boundary layer system in Z(Di)
3: Update EP by adding all the vertices of Z(Di)
4: Calculate symbolically the Jacobian matrix J
5: for all F ∈ F do
6: Calculate JF

7: if there is a complete loop in JF then
8: Calculate the stationary point in F by solving symbolically Z′

s = 0
9: Update EP by adding the point calculated at the previous step

10: for all Z̃k = {Z̃k
s } ∈ EP do

11: Initialize Ii
k ← I0

12: for s = 1 to σ(Di) do
13: if Z̃k ∈ F, F ∈ F then Build Ii

k ← Ii
k ∧ (0 < Z̃k

s < 1)
14: for j = 1 to m do
15: if lenght(lj) > 2 then Remove Z̃k from EP
16: if length(lj) = 1 then
17: if Lj < 0 then Build Ii

k ← Ii
k ∧ (Lj < 0) else Remove Z̃k from EP

18: else
19: if length(lj) = 2 then
20: if Lj > 0 then Build Ii

k ← Ii
k ∧ (Lj > 0) else Remove Z̃k from EP

21: for all l ∈ LF = {l : l ∈ {1, . . . , σ(Di)}, Z̃k
l ∈ {0, 1}} do

22: Build

Ii
k ← Ii

k ∧
�

(Z′
l(Z̃

k) > 0) if Z̃k
l = 1

(Z′
l(Z̃

k) < 0) if Z̃k
l = 0

23: Calculate the Exit Domain Set: ED = {Dk : Dk = Σ−1
Di

(Z̃k), Z̃k ∈ EP}
24: Calculate symbolically in Z̃k the reduced system and its stationary solution x∗

25: for all Dk ∈ ED do
26: Calculate V (Dk, Di) = {vj}n

j=1

27: for r = σ(Di) + 1 to n do
28: Build

Ii
k ← Ii

k ∧
�

(x∗
r > θ′

r) if vr = 1

(x∗
r < θr) if vr = −1

29: if PSDi
k �= ∅ then Append Dk to QS(Di) and label the path Di → Dk with Ii

k

30: Append Di to QS(Di) if ∃EP ∈ int(Z(Di)) and P̃ SD ⊆ PSD0 and P̃ SD �= ∅ where

P̃ SD is defined by the set of inequalities θj < x∗
j < θ′

j ∀j ∈ {σ(Di) + 1, . . . , n}

The study of the fast dynamics is performed in Z(Di) in the scaled time τ , and aims
at localizing the set of exit points in Z(Di) rather than at detailing the dynamics within
it. Such points clearly identify the next domains the trajectories are moving towards
from Di along the xs directions. To this end, the algorithm proceeds as follows:

1. Calculate the boundary layer equations in Di. The algorithm symbolically calcu-
lates the boundary layer equations in the Z variables, and defines the mapping

An Algorithm for Qualitative Simulation of Gene Regulatory Networks 119

ΣDi : Di → Z(Di), where Di = Di ∪ A(Di), that states a correspondence
between Di and its adjacent domains Dk with the interior and the elements on the
boundary ofZ(Di). Let F be the set of both the faces and the interior ofZ(Di): its
generic elementF = ΣDi(D),D ∈ ∆s is either a face ofZ(Di) whenD ∈ A(Di)
or its interior when D = Di.

2. Search for stationary points. Let us denote by EP the set of stationary points, ini-
tially made up of the vertices of Z(Di). The set of the candidate exit points EP is
updated by the possible stationary point on each element of F . To this end, the al-
gorithm symbolically calculates, ∀F ∈ F , the Jacobian matrix JF . As the presence
of a non-zero loop is a necessary condition for the existence of a stationary point,
the algorithm first searches for a non-zero loop involving all variables in JF : in
case, it symbolically calculates the stationary point on F , and updates accordingly
the set of candidate exit points EP .

3. Calculate Ii
k and possible transitions by checking stability of stationary points. The

inequality set Ii
k is calculated for each candidate exit point Z̃k = {Z̃k

s } ∈ EP

by requiring that each point fulfills stability conditions. In addition, for those Z̃k

located on elements of F , Ii
k is further constrained by the inequalities on param-

eters that impose 0 < Z̃k
s < 1 for each Z̃k

s /∈ {0, 1}. The stable points located
on Z(Di) clearly identify the set of all possible exit domains, i.e. those domains
towards which a transition from Di is possible. Such domains are easily calcu-
lated by applying the map Σ−1 to each element of Z(Di) that contains an exit
point.

The slow dynamics of regular variables xr is studied in the normal time in the usual
frame of reference, and it is reconstructed from the reduced system through the same
symbolic procedure given for regular domains.

3.3 Remarks about Symbolic Computations

Most of the calculations are performed symbolically. In addition to plain symbolic alge-
braic manipulation like arithmetic and derivative operations, the algorithms are required
to tackle more complex tasks, such as: (i) refine an inequality set with an another one;
(ii) check the consistency of two sets of inequalities I1 and I2; (iii) solve systems of
equations; (iv) find loops in the Jacobian matrix.

AssumptionA leads to major simplifications. As for (iii), Eq. (1) are generally mul-
tilinear in Z, but now assume a linear form in each DS , and can be straightforwardly
solved and analyzed for stability. Also, the solution of problems (i) and (ii) are simpli-
fied as the inequalities are always linear. Thanks to algorithms proposed both by the
literature and common symbolic computation package, such as Mathematica [16], the
tasks (i)–(iii) are simplified and feasible. As for the task (iv), it is performed by using
cycle–detection algorithms and tools of matrix graph theory [17].

In a more general modeling framework where AssumptionA is removed, it could be
really very hard to solve symbolically both the inequalities and equations as they might
result in polynomials with very high order even for low dimensional systems.

120 L. Ironi, L. Panzeri, and E. Plahte

4 An Example of the Algorithm at Work

To illustrate the algorithm at work, let us consider as an example the ODE system:

ẋ1 = κ1(1− Z11)(1 − Z22) + κ2(1 − Z21)− γ1x1 ,

ẋ2 = κ3(1− Z12)− γ2x2 ,
(7)

where the Zjk are expressed by Hill functions, parameters are all strictly positive and
the quantity spaces Θ1 = {0 < θ11 < θ12 < x1}, Θ2 = {0 < θ21 < θ22 < x2}
partition the phase space into domains as showed in Fig. 3(a).

Fig. 2. Behavior tree rooted in D1

The simulation starts from D1 with I0 defined as follows:

I0 : (
κ1 + κ2

γ1
> θ11) ∧ (θ21 <

κ3

γ2
< θ22) . (8)

The algorithm builds the behavior tree showed in Fig. 2, and calculates the inequalities
on parameters, listed in Fig. 3(b), that are associated with each path in BT(D1). Three
reachable stable states, located in D11, D12 and D5, are identified by the final leaf of
each branch in BT. As D12 ∈ ∆s, one of them is a SSP whereas the others are RSPs.
These stable states are reached by different predicted qualitative behaviors, each of
them occurring under specific constraints on parameters. For example, the trajectory
QB16 starting from D1, crossing D6, and reaching a RSP in D11 is allowed when the
inequalities I1

6 , I6
11 and I11 = (0 < κ1/γ1 < θ11) ∧ (θ21 < κ3/γ2 < θ22) hold.

Let us observe, that at present, as we have not yet tackled the problem of identify-
ing the admissible connections between entrance points and exit points, the algorithm
may generate spurious behaviors, that is trajectories that can never occur for any set
of numerical values of parameters. The behavior QB2, e.g., is spurious as I7

12 is not
consistent with I12

11 . Similarly, QB7 and QB14 are spurious. However, by checking the
consistency of all inequalities that belong to a branch in a BT, we can identify and filter
out possible spurious behaviors. As n = 2, a representation in the phase plane of the
trajectories described by the possibly filtered tree is also given (Fig. 3(a)).

The simulation outcomes are numerically confirmed, and in Fig. 4 we report some
of the numerical simulations performed under different conditions. In the following, we
give a sketch of the algorithms at work when it calculates QS(D1), QS(D7).

An Algorithm for Qualitative Simulation of Gene Regulatory Networks 121

(a) (b)

Fig. 3. (a) Phase space representation of trajectories described by BT after filtering; • denotes a
stable state. (b) Inequalities calculated by the algorithm. I1

2 , I1
6 , I1

7 , I3
8 , I6

11, I8
7 , I8

13, I13
12 , I9

13 are
equal to I0.

Calculation of QS(D1). First, the algorithm calculates the setA(D1) = {D6, D7, D2}
and the relative positions V (D6, D1) = (0, 1), V (D7, D1) = (1, 1), V (D2, D1) =
(1, 0). In D1 the model (7) reduces to the linear ODEs:

ẋ1 = µ1 − γ1x1,

ẋ2 = µ2 − γ2x2,
(9)

where µ1 = κ1+κ2 and µ2 = κ3. Transitions fromD1 are possible under the following
conditions on parameters:

Î1
2 : ẋ1 > 0⇒ (κ1+κ2

γ1
> θ11) to go to D2,

Î1
6 : ẋ2 > 0⇒ (κ3

γ2
> θ21) to go to D6,

Î1
7 : ẋ1 > 0, ẋ2 > 0⇒ Î1

2 ∧ Î1
6 to go to D7.

(10)

As the parameter space domains defined by I1
2 : I0 ∧ Î1

2 , I1
6 : I0 ∧ Î1

6 and I1
7 : I0 ∧ Î1

7

belong to PSD0, QS(D1) = {D2, D6, D7}, and the simulation spawns through three
different paths. Let us follow the path related to condition I1

7 and calculate QS(D7).

Calculation of QS(D7). In the switching domain D7 the Boundary Layer System is:

Z ′
11 =

Z11(1− Z11)
θ11

(κ1(1− Z11) + κ2(1− Z21)− γ1θ11),

Z ′
21 =

Z21(1− Z21)
θ21

(κ3 − γ2θ21).
(11)

The set F(Z(D7)) has five elements, the four faces Fk corresponding to D2, D6, D8,
D12, and the interior of Z(D7). The associated Jacobian matrices are:

Jint(Z(D7)) =
(
−κ1 −κ2

0 0

)
, J2 = (−κ1) , J6 = (0) , J8 = (0) , J12 = (−κ2) .

122 L. Ironi, L. Panzeri, and E. Plahte

(a) (b) (c)

Fig. 4. Phase space plots of the numerical simulations performed with different parameter sets
and initial conditions taken on an uniform grid of points in D1. Common parameter values are:
θ11 = θ21 = 1, θ12 = θ22 = 2, q = 0.01, κ3 = 1.5, γ2 = 1. Other parameters are: (a)
κ1 = 2.5, κ2 = 2.5, γ1 = 1; (b) κ1 = 25, κ2 = 2.5, γ1 = 10; (c) κ1 = 0.7, κ2 = 0.7, γ1 = 1.
QB4 and QB11 abstract the trajectories in (a), QB9 in (b), and QB1 and QB16 in (c).

Only J2 and J12 have a complete loop. Then, the algorithm looks for the stationary
state on F2 and F12: Z̃2 = (1 + κ2/κ1 − γ1θ11/κ1, 0) and Z̃12 = (1 − γ1θ11/κ1, 1).
The exit point candidate set is built by adding the vertices to these points. Then, the
algorithm imposes that both Z̃2

1 and Z̃12
1 are in (0,1) (line 13 of algorithm 2):

0 < Z̃2
1 < 1⇒ (κ1 + κ2 > γ1θ11) ∧ (κ2 < γ1θ11), (12)

0 < Z̃12
1 < 1⇒ (κ1 > γ1θ11) ∧ (γ1θ11 > 0). (13)

Stability conditions for Z̃2 and Z̃12 are both fulfilled as −κ1 < 0 and −κ2 < 0,
whereas stability conditions on variable Zl, l = 2 requires that:

Z ′
2(Z̃

2) < 0⇒ κ3 − γ2θ21 < 0, (14)

Z ′
2(Z̃

12) > 0⇒ κ3 − γ2θ21 > 0. (15)

Condition I defined by (15) is compatible with (8), but condition (14) is not. Then, Z̃2

is removed from the exit point set, whereas Z̃12 is an exit point if I7
12 : I0 ∧ I holds.

Stability conditions on vertices are fulfilled only on vertex Z̃11 = (0, 1). Then, the exit
domains are D12, D11, and QS(D7) = {D12, D11}.

5 Discussion and Future Work

The work described above is the first step towards the realization of a qualitative sim-
ulation algorithm that aims at (i) generating, from a given initial state, all and none
but the trajectories of a class of nonlinear ODE models of GRNs, and (ii) providing the
constraints on parameters that should be satisfied so that a specific behavior occurs. At
the current stage, the algorithm guarantees that, for 0 < q < q � 1, the behavior
tree captures all of the sound behaviors. However, as we have not yet performed a thor-
ough analysis with respect to entrance-exit transition, or in other words, we have not yet
solved the problem (i) of identifying the only admissible connections between entrance
and exit points, the behavior tree may also contains spurious behaviors. Moreover, sin-
gular perturbation analysis is a “local” procedure that works quite well in a quantitative
context but that needs, in a qualitative context, to be supported by a “global” criterion
when local paths are combined to produce a specific trajectory. We are quite confident

An Algorithm for Qualitative Simulation of Gene Regulatory Networks 123

that when the solution of (i) together with (ii) has been automatized, the consistency of
the whole sequence of inequalities that characterizes a behavior will allow us to filter
out all spurious solutions, and to prove the soundness and completeness of our algo-
rithm. The tasks (i) and (ii) raise feasible but non-trivial algorithmic and computational
issues and require proper symbolic calculation procedures.

Another important methodological issue that needs to be further studied deals with
the stability of stationary points. More precisely, this poses two different problems: one
related to the validity of the singular perturbation analysis in the presence of zero real
part eigenvalues, and the other one to the determination of an upper bound, q, of q that
guarantees the Jacobian matrix stability. Although not a matter of discussion in this
paper, we have already solved the latter problem, but a formal proof that stability but
not asymptotic stability in the step function limit does not affect the main conclusions
from the singular perturbation analysis is still lacking.

Acknowledgements. This work is carried out within the Interdepartmental CNR-BIO-
INFORMATICS Project. It was supported in part by the National Programme for Re-
search in Functional Genomics in Norway (FUGE) in the Research Council of Norway
(grant no. NFR153302).

References

1. de Jong, H.: Modeling and simulation of genetic regulatory systems: A literature review. J.
Computational Biology 9, 67–103 (2002)

2. Glass, L., Kauffman, S.A.: The logical analysis of continuous, nonlinear biochemical control
networks. J. Theoretical Biology 39, 103–129 (1973)

3. Kuipers, B.: Qualitative Reasoning: Modeling and Simulation with Incomplete Knowledge.
MIT Press, Cambridge (1994)

4. de Jong, H., Gouzé, J.L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Qualitative simu-
lations of genetic regulatory networks using piecewise linear models. Bulletin of Mathemat-
ical Biology 66, 301–340 (2004)

5. Filippov, A.F.: Differential equations with discontinuous right hand sides. Kluwer Academic
Publishers Group, Dordrecht (1988)

6. Dordan, O., Ironi, L., Panzeri, L.: Some critical remarks on GNA (in preparation)
7. Plahte, E., Kjøglum, S.: Analysis and generic properties of gene regulatory networks with

graded response functions. Physica D: Nonlinear Phenomena 201, 150–176 (2005)
8. Gjuvsland, A., Plahte, E., Omholt, S.W.: Threshold-dominated regulation hides genetic vari-

ation in gene expression networks. BMC Systems Biology 1 (2007)
9. Plahte, E., Mestl, T., Omholt, S.W.: A methodological basis for description and analysis of

systems with complex switch-like interactions. Journal of Mathematical Biology 36, 321–
348 (1998)

10. Brazhnik, P., de la Fuente, A., Mendes, P.: Gene networks: how to put the function in ge-
nomics. Trends in Biotechnology 20, 467–472 (2002)

11. de Jong, H., Geiselmann, J., Batt, G., Hernandez, C., Page, M.: Qualitative simulation of the
initiation of sporulation in Bacillus subtilis. Bulletin of Mathematical Biology 66, 261–300
(2004)

12. Ropers, D., de Jong, H., Geiselmann, J.: Mathematical modeling of genetic regulatory net-
works: Stress response in Esterichia coli. In: Fu, P., Latterich, M., Panke, S. (eds.) Systems
and Synthetic Biology. Wiley & Sons, Chichester (in press)

124 L. Ironi, L. Panzeri, and E. Plahte

13. Ropers, D., de Jong, H., Page, M., Schneider, D., Geiselmann, J.: Qualitative simulation of
the carbon starvation response in Esterichia coli. BioSystems 84, 124–152 (2006)

14. Veflingstad, S.R., Plahte, E.: Analysis of gene regulatory network models with graded and
binary transcriptional responses. Biosystems 90, 323–339 (2007)

15. Holmes, M.: Introduction to Perturbation Methods. Springer, Berlin (1995)
16. Wolfram, S.: The Mathematica Book. Wolfram Media (2003)
17. Gross, J., Yellen, J.: Graph Theory and its Applications. Chapman & Hall/CRC Press, New

York (2006)

Property Preservation along Embedding of
Biological Regulatory Networks�

Mbarka Mabrouki1,2, Marc Aiguier1,2,
Jean-Paul Comet3, and Pascale Le Gall1,2

1 École Centrale Paris
Laboratoire de Mathématiques Appliquées aux Systèmes (MAS)

Grande Voie des Vignes - F-92295 Châtenay-Malabry
marc.aiguier@ecp.fr

2 Programme d’Épigénomique
523, Place des Terrasses de l’Agora - F-91025 Evry

{mabrouki,pascale.legall}@epigenomique.genopole.fr
3 Laboratory I3S, UMR 6070 CNRS/UNSA

Algorithmes-Euclide-B, 2000 route des Lucioles
B.P. 121, F-06903 Sophia-Antipolis

comet@unice.fr

Abstract. In the course of understanding biological regulatory networks
(BRN), scientists usually start by studying small BRNs that they be-
lieve to be of particular importance to represent a biological function,
and then, embed them in the whole network. Such a reduction can lead
to neglect relevant regulations and to study a network whose properties
can be very different from the properties of this network viewed as a part
of the whole. In this paper we study, from a logical point of view, the
preservation of properties inherited from small BRNs. The signature of
BRN, constituted by a graph, is one of the distinctive features on which
embeddings can be defined which leads us to give a first condition on
the subgraphs ensuring the preservation of properties of the embedded
graphs.

Keywords: Biological regulatory networks, network embedding, prop-
erty preservation, mathematical modeling, computational tree logic.

1 Introduction

To understand biological regulatory networks (BRN for short), modeling frame-
works and simulation technics are often useful since the complexity of the inter-
actions between constituents of the network (mainly genes and proteins) makes
intuitive reasoning difficult [3]. Nevertheless, simulation technics are in practice
difficult to manage for most of the systems because they are either large, com-
plex or only partially known. Indeed, the lack of precise knowledge about the
� This work is performed within the European project GENNETEC (GENetic NeT-

works: Emergence and Complexity) STREP 34952.

K. Horimoto et al. (Eds.): AB 2008, LNCS 5147, pp. 125–138, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

126 M. Mabrouki et al.

system (are all constituents/interactions taken into account? Which values are
given to parameters? Which is the confidence on these parameters?...) is one of
the more accurate difficulties to handle computationally all possible hypotheses
on the system. Qualitative modeling frameworks have then arose [7,13,5]: they
consist in abstracting continuous concentrations of constituents into qualitative
ones (discrete and finite) although preserving qualitative observations (like pres-
ence/absence of a constituent, increasing of the concentration of a target when
increasing the one of a regulator...).

We focus in this paper on the multivalued discrete approach developed by
R. Thomas and co-workers [13], in which the concentrations of constituents are
abstracted by integers to denote thresholds from which constituents can act on
other ones in the network. In this formalism, biological systems are described
by an interaction graph defining the static part of the system from which we
can build a huge but finite set of state transition graphs defining all the pos-
sible dynamics of the system. However, given an interaction graph, just a few
dynamic models meet the set of biological experiment observations bringing
into play interactions between graph’s constituents. To cut down in the class
of dynamic models and just preserve the good candidates, some recent works
expressed these biological experiment observations by temporal properties and
used various model-checking technics to select suitable dynamic models [4,2,9].
From these works, two software tools have been developed: GNA [4] which auto-
matically checks that a given dynamic model satisfies some biological experiment
observations, and SMBioNet [2] which cuts down in the whole class of dynamic
models to select the ones that satisfy some given biological experiment obser-
vations. In both cited tools, temporal properties denoting biological experiment
observations have been expressed in Computation Tree Logic [6].

These logical approaches based on model-checking technics have been shown
very efficient to study small BRNs but are not well-adapted for large BRNs. The
well-known reason is because model-checking technics are time consuming. In-
deed, we have to deal with the limit given by complexity theory: model-checking
is based on NP-hard or exponential algorithms. In practice, human cleverness is
used to find the situations for which model-checking may become tractable. This
is what we propose to do in this paper. Indeed, BRNs are generally embedded
into other ones. To allow to describe and study BRN behaviors in the large,
we propose in this paper to study the consequences of the embedding. More
precisely, we propose to study which are the conditions to impose on the embed-
ding to preserve the dynamics of sub-BRNs. We show that, generally speaking,
questioning temporal properties (i.e. biological experimental observations) leads
us to study the dynamics of the global BRN “from scratch”, i.e without taking
benefit of the dynamics of the sub-BRNs, which can be unacceptable in run-
ning time. On the contrary, if all dynamics of sub-BRNs are preserved, this then
leads us just to focus on the biological experiment observations linked with in-
teractions of the sub-BRNs between them. We can then hope to be able to use
both previous tools to automatically study the dynamics of the global BRN.
Moreover, this approach corresponds to the classical method used by most of

Property Preservation along Embedding of Biological Regulatory Networks 127

biologists when they study a biological system. They start by studying small
BRNs that they believe to be of particular importance to represent a biological
function. The interactions of this BRN with the external genes, are studied only
afterwards even if these external genes potentially could influence the behavior
of the studied part. Of course, this bottom-up approach makes sense only if there
is a complete preservation of sub-systems behaviors as this has been done in this
paper up to some sufficient conditions. Otherwise, systems can only be studied
globally because of the apparition of emergent properties. To comprehend this
notion of emergent properties, we introduced in [1] an abstract mathematical
denotation for complex systems.

The paper is then structured as follows: after some reminders on the tem-
poral logic CTL in Section 2, Section 3 presents a logical characterization for
BRNs. Section 4 presents the main result of this paper: the preservation of prop-
erties through the embedding of BRNs into larger networks. In Section 5, we
give a counter-example to justify the constraints we put on graph embedding
to ensure property preservation. Finally in Section 6 we give some concluding
remarks.

Let us notice the particularity of the logic for BRN presented in this paper:
signatures are not simple sets of symbols but are interaction graphs (the static
part of BRN). This is what makes tough the definition of the embedding (see
Definition 2) as well as the definitions of the consequences of the embedding both
on biological experiment observations expressed over sub-BRNs (see Definition 4)
and on the dynamics of sub-BRNs embedded into a larger one (see Definition 8).
This is what makes also nontrivial the proof of the preservation of temporal
properties through embedding.

2 Preliminaries

Computational tree logic (CTL) [6] is a branching-time temporal logic where the
structure representing all possible executions is tree-like rather than linear. It is
well-adapted to specify and reason about non-deterministic and/or concurrent
processes. Here, we consider actually a restriction of CTL by removing the next
operator X , noted CTL-X [14,15]. The reason is for biological applications, the
logical connector X is not of big relevance. The reason is twofold. First, the time
mandatory for a biological system to change of qualitative state is not determin-
istic and the elapsed time between two consecutive states has a large variance.
Secondly, the discretization of the dynamical system abstracts the quantitative
time (represented by t ∈ R+) into a qualitative time (n ∈ N). Then the real time
necessary for a NEXT transition of the biological system depends also on the
number of intermediate states used for the discretization step.

When dealing with propositional fragment of logics, a signature Atom is only
a set of propositional variables which are the atomic formulas.

Given a signature Atom, a model over Atom, so-called Kripke frame, is a
transition system (S, T) where:

128 M. Mabrouki et al.

– S is a set whose elements are usually called states;
– T ⊆ S × S is a binary relation satisfying: ∀s ∈ S, ∃s′ ∈ S, (s, s′) ∈ T ;

and (S, T) is equipped with a total function L : S → 2Atom called labeling
function.

Therefore, models over Atom are labeled transition systems where T denotes
the transition relation and L is the labeling associating for each state s of S the
set of propositional variables true at s.

Formulas over Atom are well-formed formulas whose syntactical rules are
given by:

For ::= ATOM | For ⇒ For | For∧For | For∨For | ¬For
AG For |EG For |AF For |EF For | A[For U For] | E[For U For]

The intuitive meaning of modal operator Fϕ (resp. Gϕ) means that ϕ will be
finally (F) (resp. is globally (G)) true. The prefix A (resp. E) means that the
formula is true for all possible futures (resp. there exists a future for which the
following property is true). Finally, formulas of the form ϕ U ψ mean that ϕ has
to be true until (U) ψ becomes true. They are also preceded by the prefixes A
or E.

The validity of formulas is expressed via a binary relation usually denoted
by |= between models and formulas over a set of atomic formulas Atom. A
path is any sequence σ = (s0, s1, . . . , sn, . . .) such that for every i ∈ N we have
(si, si+1) ∈ T . Then, (S, T) |= ϕ if for any state s ∈ S, (S, T) satisfies ϕ, denoted
by ((S, T), s) |= ϕ, according to the following inductive definition:

– ((S, T), s) |= p iff p ∈ L(s) for p ∈ Atom;
– ((S, T), s) |= AGϕ (resp. ((S, T), s) |= EGϕ) iff for every (resp. there exists

a) path (s0, s1, . . . , sn, . . .), for every i ∈ N, ((S, T), si) |= ϕ;
– ((S, T), s) |= AFϕ (resp. ((S, T), s) |= EFϕ) iff for every (resp. there exists

a) path (s0, s1, . . . , sn, . . .), there exists i ∈ N, ((S, T), si) |= ϕ;
– ((S, T), s) |= A[ϕ U ψ] (resp. ((S, T), s) |= E[ϕ U ψ]) iff for every (resp. there

exists a) path (s0, s1, . . . , sn, . . .), there exists i ∈ N such that ((S, T), si) |= ψ
and for every j < i, ((S, T), sj) |= ϕ;

– Boolean connectives are handled as usual.

In the sequel, to prove the preservation of properties through the embedding of
biological regulatory networks, we will use a standard equivalence relation on the
states of transition systems, the so-called divergence blind stuttering equivalence
(dbs), which have been proved to preserve CTL-X formulas, i.e. the transition
system and its quotient, with respect to the dbs equivalence relation, are ele-
mentary equivalent [10].

Let us recall the definition of a dbs relation R on a transition system (S, T).
A binary relation R on S is called a divergence blind stuttering (dbs) relation

if, and only if it is symmetric and

r R s⇐⇒

⎧⎨⎩L(r) = L(s)
(r, r′) ∈ T ⇒ ∃s0, s1, . . . , sn finite path , n ≥ 0, (s0 = s)

∧(∀i < n, r R si) ∧ r′ R sn

Property Preservation along Embedding of Biological Regulatory Networks 129

It is obvious to show that every dbs relation is transitive. Moreover, as the
case n = 0 is allowed in the second condition, the empty relation is a dbs relation.
Finally, the diagonale relation on S is also a dbs relation, and it is easy to show
that dbs relations are closed under union. Hence, the largest dbs relation exists
and is an equivalence relation noted �dbs.

Given a transition system (S, T), its quotient by �dbs, denoted (S, T)/�dbs
, is

defined by:

– the set of states S/�dbs
is the set of equivalence classes of �dbs, [s] denoting the

equivalence class of s for s state of S
– the set of transitions T/�dbs

defined by ([s], [t]) ∈ T/�dbs
iff there exists s′ ∈ [s]

and t′ ∈ [t] such that (s, t) ∈ T
– (S, T)/�dbs

is provided with the labeling function L/�dbs
defined by L/�dbs

([s]) =
L(s).

3 BRN Logic

In this section, we will present the multivalued discrete approach developed by
R. Thomas [13] for genetic regulatory networks as a logic built over the logic
CTL-X. We will follow the standard approach for presenting a logic, i.e. syntax
(signatures and formulas) and semantics (models and the satisfaction relation).

3.1 Syntax

Signatures. A biological regulatory network is represented by a labeled directed
graph, called interaction graph. Vertices abstract biological entities, as genes
or proteins, and will be called variables. Edges abstract interactions between
variables. When a variable i activates a variable j, variable i can act positively
on j, then there exists an edge from i to j labeled by the sign "+". On the
contrary, when a variable i inhibits a variable j, variable i can act negatively
on j, then there exists an edge from i to j labeled by the sign "-". Moreover,
the action, activation or inhibition, between two variables becomes efficient only
when the level of concentration of the regulator reaches a given threshold. In
the discrete modeling framework of R. Thomas, the concentration levels for the
variable i can take a finite number of values {0, 1, . . . , bi} and thresholds related
to the actions of i are numbered from 1 to bi: the action of i on j is triggered only
if the concentration of i crosses its concentration level. Thus, each interaction
i −→ j is labeled by a sign and a threshold. The knowledge of interactions
between variables, including signs and thresholds, is called the static part of
BRNs and constitutes the elements of signatures for a logic dedicated to BRNs.

Definition 1 (Signature). A BRN-signature is a labeled directed graph G =
〈V, F, Sn, Th〉 where:

1. V is a finite set whose the elements are called variables.
2. F ⊆ V × V denotes the set of edges.
3. Sn is a mapping from F to {+,−}.

130 M. Mabrouki et al.

4. Th is a mapping from F to N∗ such that:

∀(i, j) ∈ F ∀l ∈ N∗ ∃k ∈ V (Th(i, j) = l ∧ l �= 1 ⇒ (i, k) ∈ F ∧ Th(i, k) = l − 1)

Point 4. gives some restrictions on the way the edges are labeled. If an edge
outgoing from a variable i is labeled by l ≥ 2, then there exist edges outgoing
from i labeled by 1, . . . , l − 1. This well represents the qualitative nature of
thresholds in BRN as used in this paper.

Notation 1. Let G = 〈V, F, Sn, Th〉 be a BRN-signature and i be a variable in
V . G+

i , resp. G−
i , denotes the set of successors, resp. predecessors, of i in G,

and bi denotes the cardinal of the set of thresholds for i. Formally, we have:

G+
i = {j ∈ V |(i, j) ∈ F}

G−
i = {j ∈ V |(j, i) ∈ F}

bi = |{l ∈ N∗ | ∃j ∈ G+
i , Th(i, j) = l}|

Example 1. To illustrate Definition 1, we take as running example a model
inspired from the one of control of immunity in temperate bacteriophage lambda.
This model, proposed by Thieffry and Thomas in [11], contains genes cI and cro:
cI inhibits cro and activates its own synthesis whereas the variable cro inhibits
the expression of both variables, see Figure 1. The associated BRN-signature,
denoted G1 in the sequel, is simply given by:

〈 {cI, cro}, {(cI, cI), (cI, cro), (cro, cI), (cro, cro)},
Sn : {(cI, cI) �→ +, (cI, cro) �→ −, (cro, cI) �→ −, (cro, cro) �→ −},
Th : {(cI, cI) �→ 1, (cI, cro) �→ 1, (cro, cI) �→ 1, (cro, cro) �→ 2} 〉

+1 cI cro

−1

−2

−1

Fig. 1. Interaction graph for the cI − cro system

Signature embedding. Biologists can identify small parts issued from a BRN
involving a large number of genes. These parts are assimilated to a biological
function insofar as it can be proven that the biological function is essentially
related to the concentration levels of the variables occurring in the considered
subpart.

Embedding of BRN signatures can formalize such an approach. However, sig-
nature embedding cannot be simple graph embeddings (which is defined by Con-
ditions 1 and 2 of Definition 2 just below). Indeed, as well as preserving edge
signs (see Condition 2), as the thresholds on edges depend on the properties of
the graph (a threshold cannot be greater than the number of outgoing edges),
it matters to pay attention to the preservation of the conditions on the thresh-
olds (Conditions 3 and 4). In fact, as thresholds are taken into consideration

Property Preservation along Embedding of Biological Regulatory Networks 131

in signatures, the key point to carry through the embedding is the preservation
of the equality between thresholds and the numerical order between them. New
intermediate thresholds for a given variable can be introduced when including
a BRN in another one, but relationships between existing thresholds have to be
preserved in the larger one. Finally, a supplementary condition (Condition 5) has
to be added. This condition means the preservation of predecessors in interaction
graphs. This condition can seem very restrictive. However, it is useful to ensure
the preservation of properties inherited from the small BRN to the large BRN
(see the counter-example given in Section 5) which makes fail the preservation
when Condition 5 does not hold. This leads to the following definition:

Definition 2 (Signature Embedding). Let G and G′ be BRN-signatures such
that G = 〈V, F, Sn, Th〉 and G′ = 〈V ′, F ′, Sn′, Th′〉. A signature embedding
G→ G′ is an injective mapping σ : V → V ′ such that:

1. ∀i, j ∈ V, (i, j) ∈ F ⇔ (σ(i), σ(j)) ∈ F ′

2. ∀i, j ∈ V, (i, j) ∈ F, Sn(i, j) = Sn′(σ(i), σ(j))
3. ∀i ∈ V, ∀j, k ∈ G+

i , Th(i, j) = Th(i, k)⇔ Th′(σ(i), σ(j)) = Th′(σ(i), σ(k))
4. ∀i ∈ V, ∀j, k ∈ G+

i , Th(i, j) < Th(i, k)⇔ Th′(σ(i), σ(j)) < Th′(σ(i), σ(k))
5. ∀j ∈ V, ∀k′ ∈ V ′, (k′, σ(j)) ∈ F ′ ⇒ ∃i ∈ V, (i, j) ∈ F ∧ σ(i) = k′.

Notation 2. Let σ : G→ G′ be a signature embedding where G = 〈V, F, Sn, Th〉
and G′ = 〈V ′, F ′, Sn′, Th′〉 and let ω a set of variables in V , σ(ω) denotes the
set {σ(i) | i ∈ ω}.

Example 2. Figure 2 presents the BRN-signature G2, sharing with G1 both
variables cI and cro, and containing a new variable N . According to Definition 1,
a signature embedding σid between {cI, cro} and {cI, cro,N} can be defined:
σid(cI) = cI and σid(cro) = cro. Conditions 1 and 2 are clearly verified (all edges
of G1 are in G2 labeled with the same sign). Condition 3 requires that the equality
between thresholds for outgoing edges in G1 is preserved in G2, it is verified since
only Th(cI, cI) = Th(cI, cro) in G1 and we have Th′(cI, cI) = Th′(cI, cro) in
G2. Condition 4, which requires that the order between thresholds for outgoing
edges in G1 is preserved in G2, is also verified. For instance, in G1, cro has two
outgoing edges (cro, cI) and (cro, cro) with Th(cro, cI) < Th(cro, cro). In G2,
we have Th′(cro, cI) < Th′(cro, cro). Condition 5 is also verified (cI and cro in
G2 have no new predecessors with respect to G1).

Roughly speaking, we can link two BRN-signatures by a signature embedding
when the addition of new variables has only the effect of shifting the thresholds
issued from the inherited variables.

Formulas. Formulas for BRN are simply CTL-X formulas whose atomic formu-
las describe comparisons between a concentration level of a variable with some
threshold values.

Definition 3 (BRN Formulas). Let G = 〈V, F, Sn, Th〉 be a BRN-signature.
Formulas over G are CTL-X formulas whose atomic formulas are of the form
(i ∼ l) where i ∈ V , l ∈ {0, . . . , bi} and ∼∈ {=, <,>}.

132 M. Mabrouki et al.

+2 cI
−1 −2

cro −3N

−2

−1

Fig. 2. BRN-signature G2

We denote by Atom(G) the set of atomic formulas built on G and by Sen(G)
the set of formulas over G.

In the sequel, i ≥ l (resp. i ≤ l) will denote the formula i = l ∨ i > l (resp.
i = l ∨ i < l).

Signature embeddings obviously rename variables and thresholds occurring in
atomic formulas. However, the threshold renaming is not so simple. Indeed, the
presence of new variables makes side effects on the thresholds by shifting them.
This gives rise to the following definition:

Definition 4 (Formula Renaming). Let σ : G→ G′ be a signature embedding
with G = 〈V, F, Sn, Th〉 and G′ = 〈V ′, F ′, Sn′, Th′〉. For all i ∈ V ,let us note
σi : {0, 1, . . . , bi} → {0, 1, . . . , bσ(i)} the mapping defined by:

– σi(0) = 0
– For all l �= 0, σi(l) = Th′(σ(i), σ(j)) with j any arbitrary variable such that
j ∈ G+

i and Th(i, j) = l

Let us note σ : Atom(G)→ Sen(G′) the mapping defined by:

– For all (i = l)∈Atom(G) with l �= bi, σ(i = l) = σ(i) ≥ σi(l)∧σ(i) < σi(l+ 1)
– For all (i = bi) ∈ Atom(G), σ(i = bi) = σ(i) ≥ σi(bi)
– For all (i > l) ∈ Atom(G), σ(i > l) = σ(i) ≥ σi(l + 1)
– For all (i < l) ∈ Atom(G), σ(i < l) = σ(i) < σi(l)

Let us note σ
 the canonical extension of the signature embedding σ on for-
mulas in Sen(G) defined as follows:

– For p ∈ Atom(G), σ
(p) = σ(p),
– For other formulas, Boolean connectives and temporal operators are pre-

served.

The definition explains how to convert formulas in Sen(G) into formulas in
Sen(G′) by following the simple idea of translating a threshold into an interval
of possible values.

3.2 Semantics

Models. Each variable i in a BRN-signature G is a genetic entity which is charac-
terized at a given point in time by a concentration level. Dealing with regulatory
networks with thresholds whose the set of nodes is finite, the state space gener-
ated from G is finite and defined by:

Property Preservation along Embedding of Biological Regulatory Networks 133

Definition 5 (State). Let G = 〈V, F, Sn, Th〉 be a BRN-signature. The state
space SG of G is the set of mappings s : V → N such that for every i ∈ V ,
s(i) ∈ {0, . . . , bi}.

Example 3. In the BRN-signature G1 of Example 1, Variables cI and cro have,
respectively 2 and 3 possible concentration levels: 0 or 1, and 0, 1 or 2. Therefore,
The state space for G1 is SG1 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}.

The concentration level of each variable i ∈ V of a given BRN-signature G,
evolves over time depending on the concentration level of its resources (i.e. sets
of i’s predecessors in G which have reached a concentration level to affect i’s one
by making it increase or decrease). However, neither G nor the concentration
level of i’s resources gives clues to decide the concentration level that i can
reach. This is a degree of freedom of BRN-signatures which gives rise to a class
of possible G-models, so-called dynamics of G. All these possible G-models do
not correspond to actual biological functions. This is by biological knowledge
described by CTL-X properties that we can cut down in the class of all possible
G-models. Formally, G-models are defined as follows:

Definition 6 (Resources). Let G be a BRN-signature. The set of resources
RG,i(s) of a variable i at the state s ∈ SG is defined by:

RG,i(s) =

⎧⎨⎩
{j ∈ G−

i |(Sn(j, i) = + and s(j) ≥ Th(j, i))}
∪

{j ∈ G−
i |(Sn(j, i) = − and s(j) < Th(j, i))}

Hence, a resource is the presence of an activator or the absence of an inhibitor.

Example 4. Figure 3 gives the sets of resources for the three variables cI, cro
and N in SG1 and SG2 .

cI cro RG,cI RG,cro

0 0 {cro} {cI, cro}
0 1 ∅ {cI, cro}
0 2 ∅ {cI}
1 0 {cI, cro} {cro}
1 1 {cI} {cro}
1 2 {cI} ∅

cI cro N RG′,cI RG′,cro RG′,N

0 0 0 {cro} {cI, cro} {cI, cro}
0 1 0 ∅ {cI, cro} {cI, cro}
0 2 0 ∅ {cI, cro} {cI}
0 3 0 ∅ {cI} {cI}
1 0 0 {cro} {cI, cro} {cro}
1 1 0 ∅ {cI, cro} {cro}
1 2 0 ∅ {cI, cro} ∅
1 3 0 ∅ {cI} ∅
2 0 0 {cI, cro} {cro} {cro}
2 1 0 {cI} {cro} {cro}
2 2 0 {cI} {cro} ∅
2 3 0 {cI} ∅ ∅

Fig. 3. Resources of cI , cro and N in SG1 (left) and in SG2 (right)

134 M. Mabrouki et al.

Definition 7 (G-models). Let G = 〈V, F, Sn, Th〉 be a BRN-signature and
let κ = {(i, w) | i ∈ V ∧ w ⊆ G−

i } be the set of all subsets of predecessors in
G for every variable i ∈ V . A G-model is a mapping p : κ → N such that:
∀(i, w) ∈ κ, p((i, w)) ∈ {0, . . . , bi}.

Example 5. From the BRN-signature G2 of Figure 2, we have the following
set κ:

κ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{(cI, ∅), (cI, {cI}), (cI, {cro}), (cI, {cI, cro})}

∪
{(cro, ∅), (cro, {cI}), (cro, {cro}), (cro, {cI, cro})}

∪
{(N, ∅), (N, {cI}), (N, {cro}), (N, {cI, cro})}

From the value of the concentration levels for cI, cro and N , a possible G2-model
p2 is given in Figure 4 (left).

Signature embeddings σ : G → G′ have a counterpart on models which is ex-
pressed by a classic forgetful mapping. Here also, some difficulties occur due to
some restrictions to make on thresholds from the “richer” model defined on G′

to the “poorer” one defined on G. This then leads to the following definition:

Definition 8 (Reduced model). Given a signature embedding σ : G → G′

and a G′-model p′, the reduced G-model p from p′, denoted p′|σ , is defined as
follows: ∀(i, w) ∈ κ,

p((i, w)) =

⎧⎪⎪⎨⎪⎪⎩
Th(i, j) if it exists j in V such that

Th′(σ(i), σ(j))=max(i,k)∈F {Th′(σ(i), σ(k)) |
Th′(σ(i), σ(k)) ≤ p′((σ(i), σ(w)))}

0 otherwise

Example 6. Figure 4 (right) gives the reduced G1-model p1 of p2 along the
signature embedding given in Example 2.

From a G-model p, a transition system (SG, T) can be generated where the tran-
sitions in T give the state evolution as described in p. Here, two possibilities can
occur. We make evolve either many variables directly to their concentration level
specified by p, or one variable i and only by one unit in the direction of p((i, ω))
where ω is the set of resources of i at the current state. These two possibilities are
respectively called synchronous and asynchronous description of the G-model p.
Here, we follow the asynchronous description because in the nature, it is unlikely
that, in vivo, several variables cross a threshold simultaneously [12].

resource ω′ p2((cI, ω′)) p2((cro, ω
′)) p2((N, ω′))

∅ 0 0 0
{cI} 2 2 0

{cro} 2 1 0
{cI ,cro} 2 3 0

resource ω p1((cI, ω)) p1((cro, ω))

∅ 0 0
{cI} 1 1

{cro} 1 1
{cI ,cro} 1 2

Fig. 4. A G2-model p2 (left) and its reduced G1-model p1 (right)

Property Preservation along Embedding of Biological Regulatory Networks 135

Definition 9 (Asynchronous Transition System). Let G = 〈V, F, Sn, Th〉
be a BRN-signature and let p be a G-model. The asynchronous transition system
generated from p is a directed graph GTA((G, p)) = (SG, T) such that:

– ∀s ∈ SG, (s, s) ∈ T ⇔ ∀i ∈ V, s(i) = p((i, RG,i(s)))
– ∀s �= s′ ∈ SG, (s, s′) ∈ T if, and only if:
• there exists i ∈ V , such that

s′(i) =
{
s(i) + 1 and s(i) < p((i, RG,i(s)))
s(i) - 1 and s(i) > p((i, RG,i(s)))

• and s′(j) = s(j) for every j ∈ V \ {i}.

Example 7. Figure 5 gives from the left to the right, the asynchronous transi-
tion systems GTA((G1, p1)) and GTA((G2, p2)) generated from p1 and p2.

10

11 12

02

01

00 000

100

200

210 220

110

010

120

130

230

030

020

Fig. 5. Asynchronous transition systems GTA((G1, p1)) and GTA((G2, p2)). Colored
boxes represent the �dbs equivalence classes of GTA((G2, p2)) – see Section 4.

Satisfaction relation. The asynchronous transition system (SG, T) generated
from a G-model p is a transition system following the definition in Section 2.
However, to satisfy CTL formulas, we have to manipulate Kripke frames and
then we need to precise the labeling function L : SG → 2Atom(G). Given a state
s in SG,

L(s) = {i > l, i < l′, i = l′′ | i ∈ V, l ∈ {0, 1, . . . , bi − 1}, l′ ∈ {1, 2, . . . , bi},

l′′ ∈ {0, 1, . . . , bi}, s(i) > l, s(i) < l′, s(i) = l′′}

Therefore, the satisfaction relation of a formula ϕ over a BRN-signature G
for a G-model p is then defined by: p |= ϕ ⇐⇒ GTA((G, p)) |= ϕ following the
definitions given in Section 2.

4 Property Preservation along Signature Embeddings

In this section, we show that given a signature embedding σ : G → G′ and a
G′-model p′, p′ and p′|σ are elementary equivalent on formulas in Sen(G) up to σ.
This is stated by the following result.

136 M. Mabrouki et al.

Theorem 1. For every signature embedding σ : G→ G′, for every G′-model p′
and for every formula ϕ ∈ Sen(G),

p′ |= σ
(ϕ) ⇐⇒ p′|σ |= ϕ

Proof (Sketch). Let us consider a signature embedding σ : G → G′, a G′-
model p′ for the BRN-signatureG′, its associated asynchronous transition system
(SG′ , T ′) = GTA((G′, p′)) and a formula ϕ ∈ Sen(G). Let us note (SG, T) =
GTA(G, p′|σ). Start by defining the mapping B : SG → 2SG′ as follows: for every
s ∈ SG, B(s) is the set of states s′ in SG′ verifying for every i in V :

– if s(i) = bi, then
s′(σ(i)) ≥ σi(bi)

– else,
s′(σ(i)) ≥ σi(s(i)) ∧ s′(σ(i)) < σi(s(i) + 1)

The proof of Theorem 1 rests on the following intermediate propositions. The
proofs of these propositions can be found in [1].

Proposition 1. The mapping B makes a partition of SG′ , i.e.

1. ∀s, s′ ∈ S, B(s) ∩B(s′) = ∅, and
2.

⋃
s∈SG

Bs = SG′ .

Note P = {B(s)|s ∈ SG}. Then, we have:

Proposition 2. P is a dbs equivalence.

It then remains to prove:

Proposition 3. (SG′ , T ′)/�dbs
and (SG, T) are isomorphic.

It is well known that isomorphic models are elementary equivalent (i.e. they
satisfy the same set of properties). Therefore, by applying the result of [10], we
can conclude that GTA((G′, p′)) and GTA((G, p)) are elementary equivalent on
formulas over G up to formula renaming resulting from σ.

Some readers will recognize the so-called satisfaction condition of the institution
framework [8]. Hence, this BRN-logic based on signature embeddings is then an
institution.

Example 8. For the current example, the equivalence classes of �dbs in G2 are
highlighted in Figure 5 by colored boxes.

5 Counter-Example Justifying Our Restrictive Notion of
Signature Embeddings

In this section we give a counter-example to show the significance of Condi-
tion 5 (preservation of predecessors) of Definition 2. Let us consider both BRN-
signatures G and G′ of figure 6. It is possible to construct an injective mapping

Property Preservation along Embedding of Biological Regulatory Networks 137

a−1 −1a b−1

Fig. 6. Counter-example: we consider an embedding not satisfying Condition 5 in
Definition 2

resource ω′ p′((a,ω′)) p′((b, ω′))

∅ 0 0
{a} 1
{b} 1

{a, b} 1

resource ω p((a,ω))

∅ 0
{a} 1

0 101 11

00 10

Fig. 7. A G′-model p′ and its reduced G-model p

σ : V −→ V ′ satisfying Conditions 1, 2, 3, and 4 of Definition 2 with σ(a) = a.
For the signature G′ we consider the model p′ given in Figure 7 (left) from
which we deduce the reduced G-model p = p′|σ from p′ (see Figure 7-right), and
we consider the asynchronous transition systems generated from p and p′.

It is then easy to see that models p′ and p do not satisfy the same formulas of
CTL-X. For example the formula AG(AF (a = 0)) which means that the system
will infinitely often pass through a state where a = 0 is true, is satisfied by p
but not by p′.

6 Conclusion

We have presented the multivalued discrete approach for biological regulatory
networks under the classical form of a logical formalism. BRN-signatures are
made of graphs, denoting the static part of BRN. Formulas are CTL-X formulas
over atoms expressing comparisons between concentration levels of gene products
with some abstract discrete values. Models are asynchronous transition systems
deduced from the knowledge of parametrization explicating towards which con-
centration level tends a variable when it is under the influence of other ones.
Lastly, the satisfaction relation is simply deduced from the one defined for the
CTL-X formalism. In order to study how properties expressed on a small BRN
are preserved or not when embedding it within a larger one, we have equipped
our BRN formalism with signature embeddings. Their main particularity is that
they capture the fact that a concentration level or threshold relative to a network

138 M. Mabrouki et al.

is converted into an interval of concentration levels. We have proved that CTL-X
properties are preserved along such signature embeddings.

We plan to pursue our work by investigating some other conditions which
will allow us to go further in the property preservation while keeping a mean-
ing for biological experts. In particular, we are currently investigating under
which weaker embedding condition, a weaker set of CTL properties can be still
preserved.

References

1. Aiguier, M., Le Gall, P., Mabrouki, M.: A formal denotation of complex systems:
how to use algebraic refinement to deal with complexity of systems, Tech. report
(2008), http://www.epigenomique.genopole.fr/~aiguier

2. Bernot, G., Comet, J.-P., Richard, A., Guespin, J.: Application of formal methods
to biological regulatory networks: Extending Thomas’ asynchronous logical ap-
proach with temporal logic. Journal of Theoretical Biology 229(3), 339–347 (2004)

3. de Jong, H.: Modeling and simulation of genetic regulatory systems: a literature
review. J. Comput. Biol. 9(1), 67–103 (2002)

4. de Jong, H., Geiselmann, J., Hernandez, C., Page, M.: Genetic network analyzer:
qualitative simulation of genetic regulatory networks. Bioinformatics 19(3), 336–
344 (2003)

5. de Jong, H., Gouzé, J.-L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Qual-
itative simulation of genetic regulatory networks using piecewise-linear models.
Bulletin of Mathematical Biology 66(2), 301–340 (2004)

6. Emerson, E.A.: Temporal and modal logic. In: Handbook of theoretical computer
science formal models and semantics, vol. b, pp. 995–1072. MIT Press, Cambridge
(1990)

7. Glass, L., Kauffman, S.A.: The logical analysis of continuous non-linear biochemical
control networks. J. Theor. Biol. 39, 103–129 (1973)

8. Goguen, J.A., Burstall, R.-M.: Institutions: Abstract model theory for specification
and programming. Journal of the ACM 39(1), 95–146 (1992)

9. Mateus, D., Gallois, J.-P., Comet, J.-P., Le Gall, P.: Symbolic modeling of genetic
regulatory networks. Journal of Bioinformatics and Computational Biology (2007)

10. De Nicola, R., Vaandrager, F.: Three logics for branching bisimulation. J.
ACM 42(2), 458–487 (1995)

11. Thieffry, D., Thomas, R.: Dynamical behaviour of biological regulatory networks -
ii. immunity control in bacteriophage lambda. Bull. Math. Biol. 57(2), 277–297
(1995)

12. Thomas, R.: Logical analysis of systems comprising feedback loops. J. Theor.
Biol. 73(4), 631–656 (1978)

13. Thomas, R., d’Ari, R.: Biological feedback. CRC Press, Boca Raton (1990)
14. van Glabbeck, R., Weijland, W.P.: Refinement in branching time semantics. In:

Proc. IFIP Conference, pp. 613–618 (1989)
15. Wehrheim, H.: Inheritance of temporal logic properties. In: Najm, E., Nestmann,

U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 79–93. Springer, Hei-
delberg (2003)

http://www.epigenomique.genopole.fr/~aiguier

Process Algebra Models of Population Dynamics

Chris McCaig, Rachel Norman, and Carron Shankland

Department of Computing Science and Mathematics,
University of Stirling, Stirling, FK9 4LA, UK

{cmc,ran,ces}@cs.stir.ac.uk

Abstract. It is well understood that populations cannot grow without
bound and that it is competition between individuals for resources which
restricts growth. Despite centuries of interest, the question of how best
to model density dependent population growth still has no definitive an-
swer. We address this question here through a number of individual based
models of populations expressed using the process algebra WSCCS. The
advantage of these models is that they can be explicitly based on observa-
tions of individual interactions. From our probabilistic models we derive
equations expressing overall population dynamics, using a formal and
rigorous rewriting based method. These equations are easily compared
with the traditionally used deterministic Ordinary Differential Equation
models and allow evaluation of those ODE models, challenging their as-
sumptions about system dynamics. Further, the approach is applied to
epidemiology, combining population growth with disease spread.

1 Introduction

The idea that populations cannot grow without bound has been of interest to
modellers for centuries. Malthus [1], in 1798, proposed a simple exponential
growth model based on compound interest but noted that this was unrealistic,
since when a population becomes very large, access to resources will become
restricted, restricting further growth in the population. Verhulst proposed the
logistic growth model [2] to overcome this limitation and this is still widely used
to describe density dependent growth. Many other models have been proposed
to describe population dynamics [3,4,5,6] but it is not clear which model is most
appropriate in any given situation; the logistic model is the default choice in the
absence of other data. Models of population dynamics are not merely interesting
in isolation. For example in our field, epidemiology, adding birth and death of
individuals to a model of infectious disease spread can alter the dynamics of
the epidemic. Therefore, getting a suitable model of population growth is an
important step in producing realistic models of disease spread which can be
analysed to provide predictive information about potential impact of epidemics,
and to evaluate control strategies.

Process algebra has increasingly been used to model a wide range of biological
systems [7,8,9,10,11]. The benefits of using process algebras to study such sys-
tems are twofold. First, process algebra allows formal, precise and unambiguous

K. Horimoto et al. (Eds.): AB 2008, LNCS 5147, pp. 139–155, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

140 C. McCaig, R. Norman, and C. Shankland

expression of a model. Second, process algebra has a formal mathematical seman-
tics, allowing rigorous investigation of the model via a range of techniques. For
example, our work uses the discrete time process algebra Weighted Synchronous
Calculus of Communicating Systems (WSCCS)[12]. The underlying semantics
of WSCCS can be viewed as a Discrete Time Markov Chain (DTMC). Simula-
tion can be used to explore the model. Steady state analysis can be carried out,
and properties of the Markov Chain computed, e.g. probability of being in a
particular state, or average number of occurrences of an action before a specific
event occurs. Such investigation can be computationally expensive. Our previ-
ous work [13,14] has been to facilitate further symbolic analyses of the model by
developing a rewriting-based method to derive Mean Field Equations (MFEs)
from a description of a system in WSCCS. The MFEs describe the average be-
haviour of the system at the population level and are analogous to traditional
Ordinary Differential Equation (ODE) models of biological systems. The MFEs
provide an approximation of the system dynamics of the DTMC corresponding
to the WSCCS description. The derived MFEs are amenable to analysis using
established algebraic techniques developed by mathematical biologists for ODEs.

The key advantage of our approach is that biological observations of indi-
viduals can be exploited in making the (individual based) WSCCS model, and
the MFEs are derived automatically and efficiently. The alternative approach,
used by mathematical biologists for many years, is to simply write down the
MFE or ODE description assuming that behaviour at population level is well
understood. While this formulation of the equations is backed up by experience,
there is no rigorous relation between the actions of individuals and the outcome
at a population level. Matching with disease data provides validation of ODEs,
but many plausible terms can match the same data. In both approaches, facts
about individual behaviour are abstracted to obtain population level equations
capturing only information about the number in each class of individual. The
difference is that our approach makes assumptions about behaviour explicit and
that the method of abstracting is rigorous.

In this paper we consider the problem of accurately representing population
growth using process algebra. Others have investigated individual based models
of population dynamics and related their behaviour to population level equa-
tions. Sumpter [10] developed a simple WSCCS model of population growth
and derived MFEs for the model. Brännström and Sumpter [15] presented indi-
vidual based (not process algebra) models of competition which could be used
to derive several existing population models but notably not Verhulst’s logistic
equation. The work presented here improves on previous work by applying a
rigorous method across a range of different models of population growth.

Outline of the Paper. Section 2 gives a brief description of the syntax and se-
mantics of WSCCS used in our models, and an outline of the method for deriving
MFEs. In Sect. 3 WSCCS models of population dynamics are presented, which
include density dependent growth in a variety of formulations (in either births or
deaths, and introduced implicitly by enriching the WSCCS language or explicitly
by including agents representing resources for which the population competes).

Process Algebra Models of Population Dynamics 141

The resultant changes in overall population dynamics are explored, comparing
the derived MFEs to traditional population level equations for population dy-
namics. In Sect. 4 we add disease spread to our model of population dynamics.
Our results are summarised in Sect. 5.

2 Background

2.1 WSCCS Syntax and Semantics

In WSCCS the basic components are actions and the processes (or agents) that
carry out those actions. The actions are chosen by the modeller to represent
activities in the system. For example, infect , send , receive, throw dice, and so
on. Actions form an abelian group with identity

√
and the inverse of action a

being a. Actions occur instantaneously and have no duration. There is no notion
of time in WSCCS, but there is ordering of events. WSCCS is a probabilistic
process algebra, meaning that the decision to move from one state to another can
be a probabilistic one. The formal syntax and semantics of WSCCS is presented
in Tofts [12]. The main details are repeated here for the convenience of the
reader.

The possible WSCCS expressions are given by the following BNF grammar:

A ::= X | a :A | Σ{wi.Ai|i ∈ I} | A×B | A#L | Θ(A) | A[S] | X def= A .

Here X ∈ Var , a set of process variables; a ∈ Act , an action group; wi ∈ W , a
set of weights; S a set of renaming functions, S : Act → Act such that S(

√
) =
√

and S(a) = S(a); action subsets A ⊆ Act with
√ ∈ A; and arbitrary indexing

sets I. The informal interpretation of the operators is as follows:

– 0 a process which cannot proceed, representing deadlock;
– X the process bound to the variable X ;
– a :A a process which can perform the action a becoming the process A;
– Σ{wi.Ai|i ∈ I} the weighted choice between processes Ai , the weight of

Ai being wi . Considering a large number of repeated experiments of this
process, we expect to see Ai chosen with relative frequency wi/Σi∈Iwi.
Weights are generally positive natural numbers or reals, but may also in-
corporate the special weight ω which is greater than all natural numbers.
This is used in priority and is written mωn where m, n ≥ 0. The binary plus
operator can be used in place of the indexed sum i.e. writing Σ{11.a :0, 22.b :
0|i ∈ {1, 2}} as 1.a :0 + 2.b :0;

– A × B the synchronous parallel composition of A and B. At each stage
each process must perform an action with the composed process performing
the composition (denoted #) of the individual actions, e.g. a : A × b : B
yields a#b : (A×B). This is a powerful operator: models are constructed by
describing simple individuals and composing a number of those in parallel.
McCaig [13] introduces an extended notation A{n} which is syntactic sugar
for n instances of process A in parallel, where n ∈ IN;

142 C. McCaig, R. Norman, and C. Shankland

Table 1. Operational rules for WSCCS

a:A
a−→A

�
{wi.Ai|i∈I}

wi�−→Ai

A
a−→A′ B

b−→B′

A×B
a#b−→A′×B′

A
w�−→A′ B

v�−→B′

A×B
wv�−→A′×B′

A
a−→A′ B

w�−→B′

A×B
w�−→A×B′

A
w�−→A′ B

a−→B′

A×B
w�−→A′×B

A
a−→A′ a∈L
doesL(A)

A
w�−→A′ doesL(A′)

doesL(A)

A
a−→A′ a∈L

A�L
a−→A′�L

A
w�−→A′ doesL(A′)

A�L
w�−→A′�L

A
a−→A′

A[S]
S(a)
−→A′[S]

A
w�−→A′

A[S]
w�−→A′[S]

A
a−→A′ X

def
= A

X
a−→A′

A
w�−→A′ X

def
= A

X
w�−→A′

A
a−→A′

Θ(A)
a−→Θ(A′)

A
nωi
�−→A′�(j>i).A

mωj
�−→

Θ(A)
n�−→Θ(A′)

– A#L a process which can only perform actions in the group L. This operator
is used to enforce communication on actions b /∈ L. Two processes in parallel
may communicate when one carries out an action and the other carries out
the matching co-action, e.g. infect and infect . Communication can be used to
model passing of information from one process to another, or to coordinate
activity. Such communication is strictly two-way; that is, only two processes
may interact on this action;

– Θ(A) represents taking the prioritised parts of the process A only;
– A[S] represents A relabelled by the function S (we do not use relabelling in

this paper, but it is included for completeness);
– X

def= A represents binding the process variable X to the expression A.

The semantics of WSCCS is transition based, defining the actions that a
process can perform and the weight with which a state can be reached. The
operational rules of WSCCS, presented in Table 1, formalise the descriptions
above. In particular note the two different arrows which feature in the table:
a→ represents a transition associated with the action a ; and w�−→ represents a
transition associated with a weight w . The auxiliary predicate doesL(A), which
denotes the ability of A to perform L after zero or more probabilistic actions, is
well defined since only finitely branching choice expressions are allowed.

2.2 Deriving Mean Field Equations from WSCCS Models

In McCaig’s thesis [13] and the related report [14] a method is described to
automatically derive Mean Field Equations from WSCCS models. We give an

Process Algebra Models of Population Dynamics 143

N
def
= pd.

√
: 0 + pb.

√
: (N × N) + (1 − pd − pb).

√
: N

Population
def
= N{n}�{√}

Fig. 1. Naive population model

overview of the approach here to aid understanding of the following sections.
Sample derivations are given at the end of this section and in Sect. 3.2.

Consider the simple model of population growth in Fig. 1. The N agents die
with probability pd, becoming the null agent 0, give birth with probability pb,
becoming the agent consisting of two N agents in parallel, or do neither with
probability (1− pd − pb), remaining as a single agent N . The model can be sim-
ulated, producing a single trace through the dynamics of the system. A second
simulation may of course produce quite different behaviour since this is a sto-
chastic process; therefore, of more interest is the average behaviour of the system
as time progresses. This can be obtained by averaging the time series results of
repeated simulations of the system. Clearly this becomes time-consuming, as the
number of processes n and number of repetitions increases. An alternative is to
generate the whole transition system for the model and to average the states
produced, but as n increases the state space grows exponentially.

McCaig’s method avoids generating the state space of the whole system, in-
stead applying transformations to the WSCCS expression of the model, yielding
an approximation (average) of the transition system in the form of first-order
mean field equations. The approximation is shown to be “good” (i.e. lies within
the standard deviation when compared with repeated simulations) in McCaig’s
thesis. Further, when the system becomes infinitely large, the mean of the DTMC
corresponding to the transition system is proved to be equivalent to the derived
MFEs. Larger populations eliminate the stochastic effects associated with low
copy numbers.

The advantages of our approach are: the computational expense of generating
the state space and/or simulation is avoided (the method is O(a2c) where a is
the number of agents and c is the number of actions in the WSCCS descrip-
tion); it is a symbolic approach (avoiding questions regarding the exploration of
the parameter space); and the MFEs, being a different view of the system and
amenable to further analysis, offer new insight to the system.

The method applies to models of the form A1{n1}|...|Am{nm} where the Ai
communicate with each other (usually on a subset of actions). Models are limited
in that steps involving probabilistic choice between actions must be separate from
steps involving communication (which must have branches weighted 1).

Independently, the PEPA group [16,17] and Cardelli [18] have proposed meth-
ods for deriving ODEs from process algebra. Their work differs in that their
process algebras are continuous, based on rates rather than probabilities. Two
of the methods are based on a mass action assumption, and not tied to the stan-
dard process algebra semantics. In contrast, our goal has been to preserve this

144 C. McCaig, R. Norman, and C. Shankland

association, so that understanding individuals and their interactions translates
automatically to population behaviour via process algebra semantics.

Transition Table: Relating Actions to Overall System Evolution. The transition
system may be viewed as the evolution of the state vector A1{n1}|...|Am{nm}
For a particular Ai an action has three possible effects:

Exit activity: Following the action, the process evolves to some other agent
Aj therefore the number of Ai agents is decreased.

Entry activity: In symmetry with an exit activity for Ai above must be an
entry activity for Aj. The number of Aj agents increases.

None: The process becomes Ai and there is no change in number of Ai agents.

WSCCS is a synchronous calculus, therefore in each time step, for every agent in
the system, one of the above activities will occur. Our method is based around
construction and interpretation of a transition table TT noting these exit and
entry activities (Fig. 2).

for each agent Ai {
for each (wj .aj : Ak) ∈ transitions(Ai) {

for each Am ∈ components(Ak)
TT[(Ai, aj),Am] = TT[(Ai, aj),Am] + calculateTerm(Ai, wj , aj)

} }

Fig. 2. Constructing the transition table from a WSCCS model

The rows of TT denote the agents Ai at time t and their enabled actions aj.
The columns of the transition table denote the agents Ak at the next time t+1.
The term in cell (Ai aj, Ak) is the proportion of Ait agents performing aj to
become Akt+1. The derivation of this term is fully determined (see description
below) by the context of the action carried out (e.g. part of a probabilistic
choice, or part of a communication) and the composition of the population (i.e.
how many of each different agent there are). Where Ai evolves to the same agent
Ak irrespective of which action it performs a single row is used for that agent
which is labelled Ai ∗. An example is the F1 agent in Fig. 4. The mean field
equation for Akt+1 is obtained by summing the terms in the column Ak.

Some auxiliary definitions are required. Processes can be classified by syn-
tactic features as: communicating (having an action enabled that is involved in
a communication), probabilistic (having only actions enabled that are not in-
volved in communication), and priority (communicating and using ω weights).
Given a serial process A = w1.a1 : A1 + w2.a2 : A2 + ... + wn.an : An define
transitions(A) = {w1.a1 :A1, w2.a2 :A2, ..., wn.an :An}. Given a parallel process
A = A1 × A2 × ...× An define components(A) = {A1, A2, ...An}. For a process
communicating on action a, we define two groups of agents involved in the col-
laboration: collaborators are those processes with the matching action a, and
competitiors are those processes with the same action a.

Process Algebra Models of Population Dynamics 145

function calculateTerm (A, w, a): String {
case A in {

probabilistic(A): return w ∗ At;
communicating(A) and priority(A):

term = (At ∗ collaborators(A))/(At + competitors(A));
if a equals

√
return (A - term) else return term;

communicating(A) and not priority(A):
term = (At ∗ collaborators(A))/(At + collaborators(A) + competitors(A));
if a equals

√
return (A - term) else return term;

}}

Fig. 3. Pseudo code to calculate proportion of agents at time t + 1

The pseudo code to compute the terms in the table is given in Fig. 3. For
probabilistic choice, the semantics of WSCCS (Table 1) specifies that over a
number of experiments the different branches will be taken in numbers consistent
with their weights. For convenience, the weights in such choices sum to 1 in
the models in this paper hence the term is simply wAt. For communication,
McCaig enumerates the possible outcomes based on a classification of modes
of communication (prioritised or not, single action a or multiple actions e.g.
a#a#a). This results in complex formulae based on the weighted multinomial
choice of those outcomes giving the average number of communications. For
single actions, as used in this paper, these formulae can be simplified. These are
the formulae used in the calculateTerm function of Fig. 3. The full version of the
approach [13,14] assumes weights do not have to sum to 1, and also gives the
formulae for multiple action communications.

Derivation of MFE for a Simple Population Growth Model. Consider
again the simplistic model of population growth given in Fig. 1. The actions in
Fig. 1 are simply

√
. That is, activities are of no interest, only the evolution of

numbers of agents is significant. As in all of our models, the system as a whole
is described by the system equation Population , comprising multiple copies of
each kind of agent in parallel.

The transition table for this system is as follows:

0 Nt+1

(Nt,
√

) pdNt (1− pb − pd)Nt + 2pbNt

Each column leads to a MFE for that agent, but 0 is ignored here since this is
not of interest to us. The method outlined above generates the following MFE

Nt+1 = (1 + pb − pd)Nt (1)

where Nt+1 represents the number of N agents at time t + 1 expressed in terms
of Nt, the number of N agents at time t. Since this model has no communication
between agents, and a single step with probabilistic choice, the derived MFE can
be easily verified manually.

146 C. McCaig, R. Norman, and C. Shankland

3 Density Dependent Growth

Equation (1) describes a simple recurrence relation. With pb > pd the popula-
tion will become infinitely large; pb < pd will lead to the population dying out,
while pb = pd will lead to an equilibrium state for any initial population size,
N0 = n. The probabilities pb and pd are fixed, therefore the average behaviour of
this model is similar to that of the simple exponential growth model described
by Malthus [1]. Biologically, it is more realistic to consider a model in which
the probability of birth and death vary depending on the size of the population
at each instant in time (density dependence). For example, as the population
grows food and shelter become scarce, therefore individuals become weaker and
are more likely to die. Alternatively this weakness may manifest itself as a re-
duced fecundity and a reduction in the birth rates. This section presents several
ways of modelling these notions in WSCCS, obtaining more realistic models of
population growth.

3.1 Functional Probabilities

What is required is the ability to modify pb and/or pd on the fly as the pop-
ulation changes. The first method described here is to add assumptions about
how probability of birth and death depend on population size using functional
probabilities [13]. Functional probabilities add considerable convenience and ele-
gance of expression to complex models, while adding no new semantic concepts
to WSCCS. Functional probabilities are implemented by encoding population
size as part of the agent name, a technique [19] commonly used in process alge-
bra. The size of the resultant model is much increased, and the translation itself
is unremarkable: the interested reader is referred to [13] for the full details.

Instead of fixed probabilities, a functional definition is given. For example,
probability px can be made a function f of the number of A agents (denoted
[A]) by

px
def= min(max(0, f([A])), pL).

The function may take any format required, since it appears directly in the
MFEs and is often not computed numerically. The probability pL is the upper
limit for px, chosen to ensure that all probabilities in the model are always in the
range 0 ≤ p ≤ 1. The min and max expressions may be required to ensure that
px is in the allowed range, but these terms make mathematical analysis of the
MFEs more complex. Often, in our further analysis we assert px = f([A]) based
on very low likelihood of reaching a state where min and max are not satisfied
by f (therefore those states make little contribution to the average behaviour
captured by the MFEs).

Density Dependent Birth. Density dependent birth can be added to the
model in Fig. 1 by making the probability of birth pb inversely proportional
to [N].

pb
def= min(max(0, pb0 − k ∗ [N]), pL),

Process Algebra Models of Population Dynamics 147

where pb0 is the probability of birth in the absence of crowding and k is a measure
of the strength of the effect of crowding, 0 < k � 1.

Using the method of Sect. 2.2, the MFE derived is

Nt+1 = Nt + (pb0 − kNt − pd)Nt

= Nt + (pb0 − pd)Nt

(
1− kNt

pb0 − pd

)
. (2)

This is our first realistic model of population growth, derived from an ex-
pression of individual behaviour. Compare this to the discrete time version of
Verhulst’s logistic equation

Nt+1 = Nt + rNt

(
1− Nt

K

)
. (3)

where r represents reproductive rate and K the carrying capacity of the popu-
lation. Simple substitution of r = (pb0 − pd) and K = (pb0 − pd)/k in (3) yields
(2). The logistic equation is the most commonly used equation for describing
population dynamics and is frequently included as a self limiting growth term
in models of disease spread. This gives confidence in our approach, and endorses
Verhulst’s equation.

Density Dependent Death. Density dependent death can similarly be added
to Fig. 1 by choosing probability of death pd directly proportional to [N] with

pd
def= min(max(0, pd0 + k ∗ [N]), pL),

where pd0 is the probability of death in the absence of crowding. The MFE,
derived once again using our method,

Nt+1 = Nt + (pb − (pd0 + kNt))Nt

= Nt + (pb − pd0)Nt

(
1− kNt

pb − pd0

)
,

is equivalent to the logistic equation with r = (pb − pd0) and K = (pb − pd0)/k.

Summary. The results above are pleasing: we have shown that it is possible
to derive the logistic equation from an individual based model of population
growth. This contradicts the findings of Brännström and Sumpter [15] who did
not find the logistic equation for any of their models. Our results should not be
surprising: in the functional probabilities we are making the probabilities linearly
proportional to the population size, effectively encoding the same assumptions
which lead to the logistic equation in the traditional population level models. It
would have been more surprising if we had not derived the logistic equation.

3.2 Food as an Explicit Resource

The advantage of individual based modelling techniques is that population level
assumptions can be avoided, to be replaced by population level behaviours aris-
ing from the explicit individual interactions. To the models seen so far we add

148 C. McCaig, R. Norman, and C. Shankland

N1
def
= 1.eat : (N2 × N2) + 1.

√
: N2

F1
def
= 1.eat : F2 + 1.

√
: F2

N2
def
= pd.

√
: 0 + (1 − pd).

√
: N1

F2
def
= 1.

√
: F1

Population
def
= N1{n} × F1{f}�{√}

Fig. 4. Density dependence on births with non-prioritised communication

agents representing “food”, i.e. some finite resource required by individuals to
survive, and for which there is competition. Any other similar resource, e.g.
space, can be modelled in exactly the same way. Access to this resource can be
used to determine the likelihood of either birth or death.

Acquiring a resource is modelled in WSCCS by communication between food
agents and individuals, requiring the use of more complex language features than
seen in the models so far. Two forms of communication are available: prioritised
and non-prioritised. Using prioritised communication between the food agents
and the population agents forces individuals to eat; however, in a population it is
likely that some individuals, while foraging, may fail to find food which is present.
Using non-prioritised communication models the possibility that individuals fail
to eat even when food is present and is therefore more biologically plausible. As
above, models exploring density dependence on births and density dependence
on deaths are considered separately.

Density Dependence on Births. The model given in Fig. 4 has individuals
in the population competing for the available food resource (the eat action),
giving birth after eating, and dying probabilistically.

The agents N1 and N2 represent the members of the population at the differ-
ent stages of the model. The N1 agents can eat and become the parallel agent
N2×N2, representing birth. If they do not eat the N1 agents become a single
N2 agent. In the second stage of the model the N2 agents make a probabilistic
choice to die or survive. The total number of food agents is constant therefore
the F agents (F1, F2) should be thought of as units of food which the environ-
ment can produce in a time step rather than discrete portions of food which are
consumed by the population.

For such models, the method generates MFE for all agents, i.e. N1, N2, F1,
F2, where N1 is expressed in terms of N2 and vice versa. Similarly for F1 and
F2. Generally we are interested only in a complete cycle of behaviour. That is,
starting with agents N1, evolving to agents N2, then back to N1 (two stages
here). We take the N1 equation, substitute to remove occurrences of N2 and
obtain an equation only in N1 (and F1). Finally, we rename N1 as simply N .
The fact that the number of food agents remains constant means that the derived
MFE for F1 can be simplified to f in the MFE for N .

Process Algebra Models of Population Dynamics 149

Deriving the terms of the MFEs for this model is more complex: although the
definition of N1 suggests the choice to eat or not is equally weighted, in fact
this choice is also influenced by availability of F1 agents with which to synchro-
nise. This is reflected in the calculateTerm function described in Sect. 2.2. For
example, here it is possible that no individuals eat (with very low probability),
or that all do (assuming [N1] ≤ [F1]) (also with low probability), or all of the
possibilities inbetween. As explained earlier, the calculateTerm function yields
a formula based on the weighted multinomial choice of those possible outcomes.
The method yields the following transition table. Note that the term for the
communicating action (eat) reflects that N1 collaborates with F1 but has no
competitors for the action.

0 N1t+1 N2t+1 F1t+1 F2t+1

(N1t, eat) 2 N1t∗F1t
N1t+F1t

(N1t,
√

) N1t − N1t∗F1t
N1t+F1t

(F1t, ∗) F1t

(N2t,
√

) pdN2t (1 − pd)N2t

(F2t, ∗) F2t

Summing the columns and simplifying as described above leads to the MFE

Nt+1 = (1− pd)Nt +
(1 − pd)fNt

f + Nt
. (4)

Here the term (1 − pd)Nt represents the mean proportion of the existing pop-
ulation which survives the probabilistic death stage. The term fNt/(f + Nt)
represents the mean number of new births with the factor (1− pd) representing
the proportion of new births which survive the probabilistic death stage. We find
the steady state of this model by setting Nt+1 = Nt = N∗:

N∗ = (1− pd)N∗ +
(1− pd)fN∗

f + N∗ .

Solving for N∗ we get

N∗ =
(1− 2pd)f

pd
.

For biological realism the steady state should be positive, therefore pd < 0.5.
Note that this fact is not obvious from the WSCCS model, but becomes clear in
the MFE. The values of these probabilities can be observed in the field, but an
important factor is the length of timestep. If we need to reduce pd to meet the
above requirement we can reduce the timestep represented by our models and
adjust all other parameters accordingly.

Sumpter [10] developed a mechanism for describing self limiting growth in a
population which made use of food as an agent. He derived the following MFE
using an heuristic

Nt+1 = (1 − pd)Nt + min[(1 − pd)Nt, f],

150 C. McCaig, R. Norman, and C. Shankland

N1
def
= 1.eat : N2 + 1.

√
: 0

F1
def
= 1.eat : F2 + 1.

√
: F2

N2
def
= pb.

√
: (N1 × N1) + pd.

√
: 0 + (1 − pb − pd).

√
: N1

F2
def
= 1.

√
: F1

Population
def
= (N1{n} × F1{f})�{√}

Fig. 5. Density dependence on deaths with non-prioritised communication

where pd is the probability of death in any timestep and f is the number of food
agents. The underlying assumptions of this model are undesirable biologically:
individuals are guaranteed to find food if it is available because prioritised com-
munication is used. Therefore, every member of the population will give birth
at each step of time until the size of the population is larger than the number
of food agents, after which the number of births will be equal to the number of
food agents. This model has a stable steady state of N∗ = f/pd, when pd ≤ 0.5,
which is larger than for our model.

Density Dependence on Deaths. In Fig. 5 the N1 agents can once again
eat, becoming the agent N2, but here if they do not eat they die, becoming the
null agent 0. The N2 agents then give birth probabilistically and, to be realistic,
can also die probabilistically. That is, in each step of time a proportion of the
population die, for instance, due to age and some die due to a lack of food. The
MFE for this model is

Nt+1 = (1 + pb − pd)
fNt

f + Nt
, (5)

where term fNt/(f + Nt) represents the proportion of the population which eat
and therefore survive the competition for food, with the factor (1 + pb − pd)
representing the increase in the population due to births and the decrease due
to probabilistic death. Equation (5) can be rearranged to give

Nt+1 =
aNt

1 + bNt
, (6)

where a = (1 + pb − pd) and b = 1/f . Equation 6 is the Beverton-Holt model
[3], originally proposed as a model of salmon populations displaying density
dependent birth; however, we have derived this equation from an individual
based model featuring density dependent death. Our derivation endorses the
plausibility of the Beverton-Holt model, which is commonly used in models of
plant populations but not so widely used for animal populations.

Setting Nt+1 = Nt = N∗ in (5) and solving for N∗ yields the steady state

N∗ = (pb − pd)f.

In this case to ensure the steady state is positive we require pb > pd.

Process Algebra Models of Population Dynamics 151

N1
def
= pb.

√
: (N2 × B2) + pd.

√
: D2 + (1 − pb − pd).

√
: N2

F1
def
= 1.

√
: F2

N2
def
= 1.eat : N1 + 1.

√
: 0

F2
def
= 1.eat : F1 + 1.

√
: F1

B2
def
= 1.

√
: N1

D2
def
= 1.eat : 0 + 1.

√
: 0

Population
def
= (N1{n} × F1{f})�{√}

Fig. 6. Density dependence on deaths, with choice followed by communication

Order Matters? Clearly, changing the WSCCS model can affect the MFEs
derived, but even a relatively small, intuitively negligible, change can make a
difference. In the models considered in Figs. 4 and 5 the focus is on the two-
stage behaviour of the N1 agents. This means that the communicative (eating)
step is followed by the probabilistic step with births and deaths. We may naively
assume that considering the two-stage behaviour of the N2 agents, thus reversing
the order of the communicative and probabilistic steps, would lead to the same
overall long term behaviour of the model. However, the derived MFE for the
behavior of the N2 agents in Fig. 5 is

Nt+1 = (1 + pb − pd)
fNt

f + (1 + pb − pd)Nt
,

where the denominator features a factor of (1 + pb − pd) not present in (5).
This difference arises because changing the order in which the steps occur

also changes the underlying biological assumptions of the model. The newborn
individuals are now available to compete for the available food (leading to the
+pb term) and the individuals which probabilistically die are not (leading to the
−pd term). Generating a WSCCS model in which probabilistic choice is followed
by a communicative phase is more complex than simply swapping these steps.
A suitable model, which will lead to the MFE (5), can be seen in Fig. 6.

In Fig. 6 the agents which make the probabilistic choice to die enter a dying
state, D2, where they compete for food and are then removed from the system,
irrespective of whether they eat or not. The newly born individuals are in the
state B2 which does not compete for food and becomes N1 at the next stage.
This means that the overall mean two-stage behaviour of the N1 agents in Fig. 6
is the same as for the N1 agents in Fig. 5.

This simple example illustrates the importance of thinking carefully about
the biological interpretation of actions in the WSCCS model, highlighted by
the derivation of MFEs. This is particularly important when considering more
complex models such as that in Sect. 4 which adds population dynamics to a
model of infectious disease.

152 C. McCaig, R. Norman, and C. Shankland

4 Population Dynamics and Disease

While population dynamics are interesting in their own right they are also cru-
cial in developing realistic models of disease spread. The model in Fig. 7 adds
infectious disease spread, based on the models of Norman and Shankland [8], to
the density dependent death population dynamics of Fig. 5. In a typical disease
model the population is divided into 3 groups: susceptibles (S) have never had
the disease, infecteds (I) currently have the disease, and recovereds (R) have
previously had the disease and are immune to future infection.

The first stage in the model is the eating stage in which S0, I0 and R0 all
compete for food. Those that do not eat will die. The second stage is a contact
stage in which infected (Trans) agents come into contact with the population
and potentially pass the disease to susceptibles. The infected individuals are
represented by parallel agents with the Trans agents passing on the disease and
the T 1 agents able to be contacted by a Trans agent. Communication is priori-
tised so that all Trans make contact. Prioritised contact is plausible biologically
since contact with the whole population is possible (not just the susceptibles)
and contact is not guaranteed to result in infection (see SI2). S1 that are con-
tacted become SI2, while T 1 and R1 agents are not affected by contact since
infected and recovered individuals cannot become infected again. After the con-
tact stage the Trans agents all become the null agent 0 so that the infected
individuals are once again represented by a single agent. The final stage is the
probabilistic stage in which all individuals can give birth to a susceptible in-
dividual, with probability pb, or die, with probability pd. In addition the SI2
agents become infected with probability pa and I2 agents can recover with prob-
ability pr.

S0
def
= 1.eat : S1 + 1.

√
: 0 S1

def
= ω.infect : SI2 + 1.

√
: S2

R0
def
= 1.eat : R1 + 1.

√
: 0 R1

def
= ω.infect : R2 + 1.

√
: R2

I0
def
= 1.eat : (T1× Trans) + 1.

√
: 0 T1

def
= ω.infect : I2 + 1.

√
: I2

Food0
def
= 1.eat : Food1 + 1.

√
: Food1 Trans

def
= ω.infect : 0 + 1.

√
: 0

Food1
def
= 1.

√
: Food2

Food2
def
= 1.

√
: Food0

S2
def
= pb.

√
: (S0 × S0) + (1 − pb − pd).

√
: S0 + pd.

√
: 0

SI2
def
= pb.

√
: (S0 × S0) + pa.

√
: I0 + (1 − pa − pb − pd).

√
: S0 + pd.

√
: 0

I2
def
= pb.

√
: (I0 × S0) + pr.

√
: R0 + (1 − pr − pb − pd).

√
: I0 + pd.

√
: 0

R2
def
= pb.

√
: (R0 × S0) + (1 − pb − pd).

√
: R0 + pd.

√
: 0

Population
def
= Θ((S0{s} × I0{i} × Food0{f})�{√})

Fig. 7. SIR model with density dependence on deaths

Process Algebra Models of Population Dynamics 153

The system of MFEs derived from this model is

St+1 =
f

f + Nt

(
(1− pd)St + pbNt −

paStIt

Nt

)
It+1 =

f

f + Nt

(
(1− pd − pr)It +

paStIt

Nt

)
Rt+1 =

f

f + Nt

(
(1− pd)Rt + prIt

)
, (7)

where Nt = St + It + Rt, the total population size at time t. These are sim-
ilar to the standard SIR equations with frequency dependent transmission of
disease [20], a form arising naturally from WSCCS models [8]. Here, however,
there is an extra factor of f/(f + Nt) on each equation that is the proportion
of the population successfully eating. This is unconventional since in traditional
models the transmission term (in this case (paStIt)/Nt) is not affected by the
density dependent birth or death term. We emphasise that the population dy-
namics of (7) come directly from explicit representation of individuals competing
for food rather than any population level assumptions imposed on the model.
These equations are therefore candidates for modelling population dynamics in
disease systems, despite the differences to traditional models.

In contrast, if we had taken the population dynamics from Sect. 3.1, with
functional probability of birth, and added disease as above, we would merely
add a logistic term to the equation for S with each group also dying probabilis-
tically. This result would be closer to the traditional ODE models. The advan-
tage of this approach is that the nonlinear density dependent term only appears
in one equation (S), therefore the equations are simpler and easier to analyse
mathematically than (7) which contains nonlinear terms in all equations. The
disadvantage of basing a disease model on the functional probability models of
population growth is that the latter are based on assumptions about population
growth which may be incorrect.

5 Conclusion

In this paper we have presented population dynamics models in which the popu-
lation will, over time, tend to some steady state and will not display unbounded
growth. There are two distinct types of model: those in which the effects of re-
stricted resources are implicitly included by allowing more complex language fea-
tures in the model (functional probabilities) and those in which those resources
are explicitly represented by agents. The introduction of functional probabili-
ties allow us to succinctly take full advantage of the expressive capabilities of
WSCCS. These models led naturally to the logistic equation [2], the classical ex-
pression used to describe population dynamics. This is in contrast to the results
of Brännström and Sumpter [15] who found several other existing expressions
could be derived from their individual based models but not the logistic equa-
tion. The logistic equation arises from our models because the assumptions used

154 C. McCaig, R. Norman, and C. Shankland

to introduce density dependence – functional probabilities which are linearly
proportional to the population size – match the assumptions on which the lo-
gistic equation is based. If we use functional probabilities which are non-linearly
proportional to the population size we would of course obtain different MFEs. It
can be easily argued that adding functional rates is self-defeating for our objec-
tives; if we allow inclusion of strong implicit assumptions, such as the nature of
population growth, then we may as well simply write down the MFEs directly.

In order to reduce the number of population level assumptions in our models
we have also developed models which feature agents to represent food, with the
dynamics in the population arising from the competition between individuals
for food. With density dependent death this model leads to the Beverton-Holt
model [3] which was proposed for the population dynamics of fish stocks. The
fact that this equation has naturally arisen here from the competition between
individuals means we can consider the Beverton-Holt model a serious candidate
to be used when modelling population dynamics. Further investigation including
matching with data is required.

Lastly, our goal in population modelling is to incorporate models of disease
to gain a more realistic individual based disease model. By adding a model of
disease spread to population dynamics we have derived a system of equations (7)
which differs from those which have previously been described in the literature.
Because the population dynamics in our model naturally arise from the inter-
actions between individuals and the environment, rather than any assumptions
we have imposed on the population dynamics, we have well-founded reason to
propose this model for a disease system featuring density dependence in deaths.
As above, future work will include validating our models with disease data.

Acknowledgements. This work was supported by EPSRC through a Doctoral
Training Grant (CM, from 2004–2007), and through System Dynamics from Indi-
vidual Interactions: A process algebra approach to epidemiology (EP/E006280/1,
all authors, 2007–2010).

References

1. Malthus, T.: An essay on the principle of population (1798)
2. Verhulst, P.: Notice sur la loi que la population suit dans son accroissement. Corr.

Math. et Phys. 10, 113–121 (1838)
3. Beverton, R., Holt, S.: On the dynamics of exploited fish populations. Fisheries

Investigations, Series 2. H.M.S.O., vol. 19 (1957)
4. Gompertz, B.: On the nature of the function expressive of the law of human mortal-

ity, and on a new mode of determining the value of life contingencies. Philosophical
transactions of the Royal Society of London Series B 115, 513–585 (1825)

5. Hassell, M.: Density-dependence in single-species populations. Journal of Animal
Ecology 45, 283–296 (1975)

6. Ricker, W.: Stock and recruitement. Journal of the Fisheries Research Board of
Canada 11, 559–623 (1954)

Process Algebra Models of Population Dynamics 155

7. Calder, M., Gilmore, S., Hillston, J.: Modelling the influence of RKIP on the ERK
signalling pathway using the stochastic process algebra PEPA. In: Proceedings of
BioCONCUR 2004. Electronic Notes in Theoretical Computer Science. Elsevier,
Amsterdam (2004)

8. Norman, R., Shankland, C.: Developing the use of process algebra in the derivation
and analysis of mathematical models of infectious disease. In: Moreno-Dı́az Jr.,
R., Pichler, F. (eds.) EUROCAST 2003. LNCS, vol. 2809, pp. 404–414. Springer,
Heidelberg (2003)

9. Regev, A., Panina, E., Silverman, W., Cardelli, L., Shapiro, E.: Bioambients: an
abstraction for biological compartments. Theoretical Computer Science 325, 141–
167 (2004)

10. Sumpter, D.: From Bee to Society: an agent based investigation of honeybee
colonies. PhD thesis, UMIST (2000)

11. Tofts, C.: Using process algebra to describe social insect behaviour. Transactions
of the Society for Computer Simulation 9, 227–283 (1993)

12. Tofts, C.: Processes with probabilities, priority and time. Formal Aspects of Com-
puting 6, 536–564 (1994)

13. McCaig, C.: From individuals to populations: changing scale in process algebra
models of biological systems. PhD thesis, University of Stirling (2008),
www.cs.stir.ac.uk/∼cmc/thesis.ps

14. McCaig, C., Norman, R., Shankland, C.: Deriving mean field equations from
process algebra models. Technical Report 175, University of Stirling (2008),
www.cs.stir.ac.uk/research/publications/techreps

15. Brännström, A., Sumpter, D.: The role of competition and clustering in population
dynamics. Proceedings of the Royal Society of London Series B 272, 2065–2072
(2005)

16. Calder, M., Gilmore, S., Hillston, J.: Automatically deriving ODEs from process
algebra models of signalling pathways. In: Proceedings of CMSB 2005 (Computa-
tional Methods in Systems Biology), pp. 204–215 (2005)

17. Hillston, J.: Fluid Flow Approximation of PEPA models. In: QEST 2005, Proceed-
ings of the 2nd International Conference on Quantitative Evaluation of Systems,
pp. 33–42. IEEE Computer Society Press, Torino (2005)

18. Cardelli, L.: On process rate semantics. Theoretical Computer Science 391, 190–215
(2008)

19. Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs
(1989)

20. Begon, M., Bennet, M., Bowers, R., French, N., Hazel, S., Turner, J.: A clarification
of transmission terms in host-microparasite models: numbers, densities and areas.
Epidemiology and infection 129, 147–153 (2002)

www.cs.stir.ac.uk/~cmc/thesis.ps
www.cs.stir.ac.uk/research/publications/techreps

Algebraic Analysis of Bifurcation and Limit

Cycles for Biological Systems�

Wei Niu1 and Dongming Wang1,2

1 Laboratoire d’Informatique de Paris 6, Université Pierre et Marie Curie – CNRS,
104 avenue du Président Kennedy, F-75016 Paris, France

2 LMIB – SKLSDE – School of Science, Beihang University, Beijing 100083, China
wei.niu@etu.upmc.fr, Dongming.Wang@lip6.fr

Abstract. In this paper, we show how to analyze bifurcation and limit
cycles for biological systems by using an algebraic approach based on
triangular decomposition, Gröbner bases, discriminant varieties, real so-
lution classification, and quantifier elimination by partial CAD. The
analysis of bifurcation and limit cycles for a concrete two-dimensional
system, the self-assembling micelle system with chemical sinks, is pre-
sented in detail. It is proved that this system may have a focus of order
3, from which three limit cycles can be constructed by small perturba-
tion. The applicability of our approach is further illustrated by the con-
struction of limit cycles for a two-dimensional Kolmogorov prey-predator
system and a three-dimensional Lotka–Volterra system.

1 Introduction

Many physical and biological phenomena may be modeled mathematically by
dynamical systems. For most nonlinear dynamical systems, it is difficult to find
their exact analytical solutions (if such solutions exist at all). Therefore, to under-
stand the phenomenon described by a complex dynamical system, it is necessary
to study its behaviors such as stability, bifurcation, and limit cycles qualitatively.
The qualitative analysis of such behaviors is a highly nontrivial task and for bi-
ological systems it is often performed experimentally by means of numerical
simulation and visualization (see, e.g., [2]). Dynamical systems usually involve
parameters and their behaviors may change dramatically as the parameters vary.
Symbolic and algebraic computation provides powerful tools for rigorous quali-
tative analysis of dynamical systems with parameters.

We are concerned with biological phenomena that may be modeled by au-
tonomous systems of ordinary differential equations of the form

dx1

dt
= p1(λ, x1, . . . , xn), ,

dxn

dt
= pn(λ, x1, . . . , xn), (1.1)

where p1, . . . , pn are polynomials (or rational functions) in λ and x1, . . . , xn

with real coefficients and λ = λ1, . . . , λm are real parameters independent of the
derivation variable t. As usual, each xi is a function of t.
� This work has been supported by the Chinese National Key Basic Research (973)

Projects 2004CB318000 and 2005CB321901/2 and the SKLSDE Project 07-003.

K. Horimoto et al. (Eds.): AB 2008, LNCS 5147, pp. 156–171, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Algebraic Analysis of Bifurcation and Limit Cycles for Biological Systems 157

For biological systems of the form (1.1) with p1, . . . , pn being rational func-
tions, it has been demonstrated in [15,16,23,24] how their steady states can be
detected and how the stability of the steady states can be analyzed by using
symbolic and algebraic computation. The technique of linearization used for
stability analysis there may fail at bifurcation points because near such points
the behavior of system (1.1) may differ qualitatively from that of its linearized
system and bifurcation may occur (see [10,14,29]). Even for autonomous systems
there may be many different bifurcating situations, whose study requires sophis-
ticated mathematical methods and effective computational tools. Among them
there is one important situation, called Hopf bifurcation (or Andronov–Hopf bi-
furcation). In this situation, the Jacobian matrix of system (1.1) has a pair of
purely imaginary eigenvalues but no other eigenvalue with zero real part. Hopf
bifurcation leads to the birth of limit cycles from a steady state of the dynami-
cal system, when the steady state changes its stability via the movements of the
imaginary eigenvalues away from the imaginary axis.

The behavior of limit cycles (i.e., isolated periodic orbits) has been observed
in many physical and biological systems. The study of limit cycles is a subject of
active research and of great interest in pure mathematics for more than a century.
Determining the existence and the exact number of limit cycles is a difficult prob-
lem even for planar autonomous polynomial differential systems. This problem
is closely related to the longstanding 16th problem of D. Hilbert [8,18,20,28,29].
The analysis of bifurcation and limit cycles is not only a challenging problem in
the qualitative theory of dynamical systems, but also of practical value now for
our understanding of the qualitative behaviors of biological systems.

In this paper, we analyze bifurcation and construct limit cycles for a concrete
two-dimensional (planar) system, the self-assembling micelle system with chem-
ical sinks [2], by using an algebraic approach based on triangular decomposition
[21,25], Gröbner bases [3,9], discriminant varieties [11], real solution classification
[27], and quantifier elimination by partial CAD [6]. The stability and bifurcation
for this biological system have been analyzed initially in [16], where our general
algebraic approach is described in generality. Here we show that this system
may have a focus of order 3, from which three limit cycles can be constructed
by small perturbation. The applicability of our approach is further illustrated
by the construction of limit cycles for a Kolmogorov prey-predator system and a
Lotka–Volterra system. The paper is structured as follows. In the following sec-
tion, we explain how bifurcation and limit cycles for planar autonomous systems
may be analyzed by using algebraic methods. The analysis of bifurcation and the
construction of limit cycles for the self-assembling micelle system with chemical
sinks are presented in detail in Section 3. Section 4 contains the results of analysis
of bifurcation and limit cycles for the two-dimensional cubic Kolmogorov prey-
predator system and the competitive three-dimensional Lotka–Volterra system.
The paper concludes with a few remarks in Section 5.

Prior to the algebraic analysis of bifurcation investigated by the authors [16],
other relevant work has been done by El Kahoui and Weber [7] who applied
quantifier elimination [6] to Hopf bifurcation analysis, by Lu and others in [12,13]

158 W. Niu and D. Wang

where limit cycles for a class of biological systems are analyzed by using simi-
lar algebraic approaches, and by other researchers in the purely mathematical
context of bifurcation and limit cycles (see, e.g., [8,18,19]). Hopf bifurcation an-
alyzed in the mathematical context is usually for systems in the canonical form
with the origin as their steady state. The biological systems with parameters
that we need to analyze are not given in such a form. Transformation of the
systems to the canonical form results in complicated expressions and the intro-
duction of new variables and thus increases the computational complexity for
the subsequent algebraic analysis considerably.

2 Bifurcation Analysis for Two-Dimensional Systems

In this section, we consider the case of Hopf bifurcation for n = 2 in which limit
cycles may bifurcate. In this case, the characteristic polynomial of the Jacobian
matrix of system (1.1) at a steady state has a pair of purely imaginary roots and
the differential system is known as of center-focus type.

Let n = 2, the variables x1 and x2 be renamed x and y, (x̄, ȳ) be a steady
state of system (1.1), and J̄ be the Jacobian matrix[

a(λ, x, y) b(λ, x, y)
c(λ, x, y) d(λ, x, y)

]
of (1.1) at (x̄, ȳ). Then the characteristic polynomial of J̄ has a pair of purely
imaginary roots only if (x̄, ȳ) satisfies the conditions

a+ d = 0, −a2 − bc > 0. (2.1)

The problems of deciding whether the steady states of system (1.1) without
parameters satisfy the conditions (2.1) and determining the conditions on the
parameters λ (when they are present) for the steady states of (1.1) to satisfy
(2.1) may be solved by using algebraic methods based on quantifier elimination
[6], real solution classification [27], and discriminant varieties [11].

Now assume that the conditions (2.1) are satisfied. We want to analyze the
bifurcation and limit cycles for system (1.1) with n = 2. In the literature there are
several methods for studying this problem [8], e.g., by using Poincaré–Birkhott
normal forms, Liapunov constants, succession functions, averaging, and intrinsic
harmonic balancing. To deal with the problem, we make a linear transformation

x = −1
c
Y − a

cδ
X + x̄, y = −1

δ
X + ȳ, t =

τ

δ
, (2.2)

where δ =
√
−a2 − bc. Then system (1.1) with n = 2 is transformed into the

following canonical form

dX
dτ

= Y + P (λ, δ, x̄, ȳ, X, Y),
dY
dτ

= −X +Q(λ, δ, x̄, ȳ, X, Y), (2.3)

where P and Q are polynomials in Q(λ, δ)[x̄, ȳ, X, Y] and Q denotes the field of
rational numbers.

Algebraic Analysis of Bifurcation and Limit Cycles for Biological Systems 159

According to Liapunov’s theorem [14,29], if one can construct an analytic
function L(X,Y) ∈ Q(λ, δ)[x̄, ȳ, X, Y], called a Liapunov function, such that
L(X,Y) is positive in the neighborhood of a steady state and the differential of
L(X,Y) along the integral curve of the differential system is definite, then the
stability of the steady state can be determined by the sign of the differential. In
[20], Wang described a procedure based on the classical method of J. H. Poincaré
for constructing such a function for (2.3). Using this procedure, one can compute
so-called Liapunov constants (or focal values) v3, v5, . . . , v2j+1, . . . in λ, δ, x̄, ȳ
such that the differential L(X,Y) along the integral curve of (2.3) is of the form

dL(X,Y)
dτ

= v3Y
4 + v5Y

6 + · · ·+ v2j+1Y
2j+2 + · · · .

Then the stability of the steady state (0, 0) for system (2.3) and thus (x̄, ȳ) for
system (1.1) is determined by the sign of dL/dτ and therefore by the sign of
the first nonzero Liapunov constant v2k+1. Namely, we have the following simple
criteria.

Theorem 1 ([20,29]). For any given parametric values λ̄ of λ and steady state
(x̄, ȳ) = (x̄1, x̄2) of system (1.1) with n = 2,

(a) if there is an integer k ≥ 1 such that v3 = · · · = v2k−1 = 0 but v2k+1 �= 0, then
(x̄, ȳ) is unstable when v2k+1 > 0, and asymptotically stable when v2k+1 < 0;

(b) if v2j+1 = 0 for all j = 1, 2, . . ., then (x̄, ȳ) is stable of center type, but not
asymptotically stable.

In case (a), the steady state (x̄, ȳ) of system (1.1) is said to be a focus of order k.
In case (b), (x̄, ȳ) is said to be a center of (1.1). By Theorem 1 (a), the problem
of determining the stability of a focus is reduced to that of determining the
signs of the Liapunov constants and thus may be solved by using the algebraic
methods mentioned above.

It is possible to construct limit cycles in the neighborhood of a focus (so-called
small-amplitude limit cycles) by perturbation. According to the fundamental
theorem on bifurcation and limit cycles [1, p. 239], if the steady state (0, 0) of
(2.3) is a focus of order k, then by perturbing (2.3), k small-amplitude limit
cycles near (0, 0) may bifurcate. To construct such limit cycles, one needs to find
the real solutions of v3 = · · · = v2k−1 = 0, v2k+1 �= 0. This may be done by
a combination of the methods and software tools of triangular decomposition,
Gröbner bases, and real solving. When a real solution is found, one may perturb
the system so that the Liapunov constants of the perturbed system have alternate
signs, i.e., vivi+2 < 0 for i = 3, . . . , 2k + 1 in the neighborhood of (0, 0). Then k
(and at most k) small-amplitude limit cycles may be created from the focus.

Determining necessary and sufficient conditions for (0, 0) to be a center from
the computed Liapunov constants is a tougher issue because the conditions in
Theorem 1 (b) are given by infinitely many equalities (in a finite number of vari-
ables). It may be tackled by using algebraic computation (as shown in the exten-
sive literature on the derivation of center conditions, see, e.g., [22, Sect. 10.3])

160 W. Niu and D. Wang

together with some sophisticated mathematical techniques. The main difficulty
in deriving center conditions and searching for differential systems having foci
of high order from Liapunov constants comes from the large polynomials that
cannot be effectively managed even on a powerful computer.

3 Bifurcation and Limit Cycles for Self-assembling
Micelle Systems with Chemical Sinks

Consider the following dissipative dynamical system studied in [2,16]:

dx
dt

= µ− xy2 − x(r + α) = p,
dy
dt

= rx + xy2 − ηy = q. (3.1)

The rate coefficients α and η represent combined quantities that include a com-
mon flow-rate component as well as separate chemical sink-rates for each species,
and µ and r are intrinsic parameters.

We want to derive conditions for system (3.1) to be of center-focus type and
for its foci to be stable and to construct small-amplitude limit cycles by means
of bifurcation analysis.

3.1 Bifurcation Analysis

To determine the conditions under which system (3.1) is of center-focus, we first
compute the purely lexicographical (plex) Gröbner basis of {p, q} with y ≺ x:
the basis consists of two polynomials

g1 = ηy3 − µy2 + rηy + αηy − rµ, g2 = αx + ηy − µ.

The system g1 = 0, g2 = 0 has real solutions for any parametric values of µ, r,
and α �= 0, η �= 0. Therefore, for αη �= 0 system (3.1) always has steady states.
Let αη �= 0 and ȳ = w be a real root of g1. Then x̄ = (µ− ηw)/α is a real root
of g2. The Jacobian matrix of (3.1) at (x̄, ȳ) is[

a b
c d

]
=

⎡⎣−(w2 + r + α) − 2 w(µ−ηw)
α

r + w2 2 w(µ−ηw)
α − η

⎤⎦ .
System (3.1) becomes of center-focus type when

f1 = αw2 + 2 ηw2 − 2µw + rα + αη + α2 = −(a+ d)α = 0,

f = (α− η)w2 − rη + rα + α2 = a2 + bc+ (a+ d)(r + w2) < 0.

Note that
f2 = g1|y=w = ηw3 − µw2 + rηw + αηw − rµ = 0.

From f1 = f2 = 0, f < 0 and by using the Maple package DISCOVERER (devel-
oped by B. Xia, see http://www.is.pku.edu.cn/˜xbc/software.html) or DV (de-
veloped by G. Moroz and F. Rouillier, see http://fgbrs.lip6.fr/Software/DV/),
one can obtain conditions (CF) in the parameters η, µ, r, α for (3.1) to be of
center-focus type, under which limit cycles may bifurcate from (x̄, ȳ). The

Algebraic Analysis of Bifurcation and Limit Cycles for Biological Systems 161

conditions (CF) are quite complicated and we do not produce them here. It may
also be proved easily (e.g., by using DISCOVERER) that, if η = α, then there
are no real values of µ, r, α �= 0 that satisfy (CF). This confirms the conclusion
in [2] that Hopf bifurcations are absent and (CF) hold only for non-physical
values of α in this case. However, there do exist real values of µ, r, η, α such that
0 �= η �= α �= 0 and (CF) hold, as we will see clearly below.

Under the conditions (CF), system (3.1) may be transformed by (2.2) into
the following canonical form

dX
dτ

= Y +
δ

α
Q,

dY
dτ

= −X +Q, (3.2)

corresponding to (2.3), where δ =
√
−f and

Q =
γ

(r + w2)δ3
X2 − 2αw

(r + w2)δ2
XY − α(r + α+ w2)

(r + w2)δ4
X3 +

α

(r + w2)δ3
X2Y,

γ = 2αw3 + ηw3 − µw2 + 2α2w + 2 rαw + rηw − rµ.
(3.3)

The Liapunov constants of (3.2) may be computed by the function miscel[licon]

from the Epsilon library [22] (see http://www-calfor.lip6.fr/˜wang/epsilon). The
first Liapunov constant is

v3 =
α

3 (r + w2)δ3
− r + α+ w2

(r + w2)δ3
− 2αwγ

3 (r + w2)2δ5
+

2wγ
3α(r + w2)2δ3

+
2 γ2

3α(r + w2)2δ5
,

whose numerator v̄3, when expanded, has 34 terms. The numerators v̄5, . . . , v̄13 of
the subsequent 5 Liapunov constants v5, . . . , v13 consist of 384, 1969, 6616, 17504,
39467 terms and are of total degrees 18, 28, 38, 48, 58 in the variables η, r, α, w, δ,
µ, respectively.

Let us first take η = 1 as in [2]. We want to determine real values of r, α
and µ such that a + d = 0, a2 + bc < 0, v3 = v5 = 0 but v7 �= 0, so that
the steady state (0, 0) of (3.2) is a focus of order 3. For this purpose, we first
compute the plex Gröbner basis G of {f1, f2, δ

2 + f, v̄3, v̄5} under the variable
order r ≺ α ≺ w ≺ δ ≺ µ using the Groebner package in Maple. It is found that
the first polynomial in G may be factorized as

α r7(4 r + 1)2(24 r − 1)2(16 r2 − 24 r + 1)h, (3.4)

where
h = 1474560 r7 − 3997696 r6 + 4549632 r5 − 4503808 r4

− 4966528 r3− 928256 r2 − 24396 r+ 2025.
Since all the physical parameters are required to be positive, we can assume that
αδ �= 0 and r > 0, so the factors α, r, 4 r + 1 in (3.4) need not be considered.
Let z be a new indeterminate and fix the order for the variables as r ≺ α ≺
w ≺ δ ≺ µ ≺ z. The reduced plex Gröbner bases of both G ∪ {24 r− 1, zαδ− 1}
and G ∪ {16 r2 − 24 r + 1, zαδ − 1} are equal to {1}, so the factors 24 r − 1 and
16 r2−24 r+1 need not be considered either. The technique used here to exclude

162 W. Niu and D. Wang

the case αδ = 0 by introducing z and adding the equation zαδ − 1 is standard
and known as Rabinowich’s trick.

Now compute the plex Gröbner basis G∗ of G ∪ {h, zαδ − 1} with respect to
the above variable order: G∗ consists of 6 polynomials, of which the first is h.
The set of zeros of G∗ covers all the zeros (r̄, ᾱ, µ̄, w̄, δ̄) of G with r̄ > 0 and
ᾱδ̄ �= 0. Isolating the real zeros of G∗ using the Maple package RS (developed
by F. Rouillier, see http://fgbrs.lip6.fr/˜roullier/Software/RS/), we find that G∗
has 8 real zeros. Among these zeros there is one and only one (r̄, ᾱ, µ̄, w̄, δ̄) for
which r̄, ᾱ, µ̄, w̄, δ̄ are all positive. For this positive zero, we have

r̄ ≈ 0.033247029312587, ᾱ ≈ 0.347417369934422,
µ̄ ≈ 1.165669793409291, w̄ ≈ 0.702121202169318.

(3.5)

It may be easily verified by using RS that the real zero (r̄, ᾱ, µ̄, w̄) satisfies f < 0,
and that for η = 1 and (r, α, µ) = (r̄, ᾱ, µ̄), v3 = 0, v5 = 0 and v7 < 0. Therefore,
the steady state

(x̄, ȳ) =
(
µ̄− w̄
ᾱ

, w̄

)
≈ (1.334270049098212, 0.702121202169318) (3.6)

is an asymptotically stable focus of order 3 and thus three limit cycles may
bifurcate from (x̄, ȳ) for system (3.1) with small perturbation.

Theorem 2. For η = 1, there is one and only one set of positive values r̄, ᾱ, µ̄
as shown in (3.5) for the parameters r, α, µ such that system (3.1) has a focus
of order 3. This focus is located at (x̄, ȳ) = ((µ̄− w̄)/ᾱ, w̄) and is asymptotically
stable, where w̄ is as in (3.5).

In the next subsection, we will show how to construct a perturbed polynomial
differential system of (3.2) that has three small-amplitude limit cycles near (0, 0).

3.2 Construction of Limit Cycles

To construct small-amplitude limit cycles, let us consider the following perturbed
system of (3.2):

dX
dτ

= λX + Y +
δ

α
Q1,

dY
dτ

= −X + λY +Q2, (3.7)

where

Q1 =
γ

(r + w2)δ3
X2 − 2αw

(r + w2)δ2
XY − α(r + α+ w2)

(r + w2)δ4
X3

+
[

α

(r + w2)δ3
+ ω

]
X2Y,

Q2 =
γ

(r + w2)δ3
X2 − 2αw

(r + w2)δ2
XY −

[
α(r + α+ w2)

(r + w2)δ4
+ ξ

]
X3

+
[

α

(r + w2)δ3
+ θ

]
X2Y,

Algebraic Analysis of Bifurcation and Limit Cycles for Biological Systems 163

and γ is as in (3.3). The first three Liapunov constants of (3.7) computed by the
Epsilon function miscel[licon] are as follows:

v3|λ=0 =
θ

3
+

Γ1

3αδ5(r + w2)2
,

where Γ1 consists of 34 terms and is of total degree 8 in the variables r, α, w, δ, µ;

v5|λ=0, θ=0 =
Γ2ω + Γ3ξ + Γ4

45α3δ11(r + w2)4
,

where Γ2, Γ3, Γ4 consist of 62, 62, 384 terms and are of total degrees 15, 15, 12
in r, α, w, δ, µ, respectively;

v7|λ=0, θ=0, ω=0 =
Γ5ξ

2 + Γ6ξ + Γ7

1890α5δ17(r + w2)6
,

where Γ5, Γ6, Γ7 consist of 90, 581, 1969 terms and are of total degrees 25, 22, 19
in r, α, w, δ, µ, respectively.

Obviously, if λ = θ = 0, then v3 = 0, so Γ1 = 0. Thus we may use Γ1 to reduce
the numerator v̄5 of v5|λ=0, θ=0 to obtain a remainder R5 (which consists of 80
terms and is of total degree 20 in r, α, w, δ, µ, ω, ξ) such that v̄5 = U5Γ1 + R5

for some U5. Similarly, we can use Γ1 to reduce the numerator of v7|λ=0, θ=0, ω=0

to get a remainder R7, which consists of 348 terms and is of total degree 20 in
r, α, w, δ, µ, ξ.

Note that r > 0, α > 0, δ > 0, w > 0, µ > 0 and Γ1 vanishes at any zero of
G∗. So one can choose −1 � θ < 0, such that v3 < 0. Next, we determine the
condition on ω and ξ such that G∗ = 0 and R5 > 0. Using the DV package, we
compute a minimal discriminant variety ∆1(ω, ξ) of G∗ = 0, R5 �= 0. By means of
partial CAD, we can obtain 18 cells of the two-dimensional real space R2 of ω, ξ
decomposed by ∆1 = 0. Choosing one sample point in each cell and computing
the sign of R5 at each sample point, we find that under the assumption r > 0,
α > 0, δ > 0, w > 0, µ > 0, |ξ| < 1, if ω < 3/32, then R5 > 0. Finally, we
determine the condition on ξ such that G∗ = 0 and R7 < 0. Using the DV
package, we compute a minimal discriminant variety ∆2(ξ) of G∗ = 0, R7 �= 0:
∆2 has 10 real zeros ξ1 < · · · < ξ10, which divide the real space R of ξ into 11
intervals. We choose one sample point in each interval, compute the sign of R7

at each sample point, and thus find that, under the assumption r > 0, α > 0,
δ > 0, w > 0, µ > 0, if ξ3 < ξ < ξ10, then R7 < 0, where

ξ3 ∈
[
−2845043675

4294967296
,−22760349399

34359738368

]
, ξ10 ∈

[
2379513075
67108864

,
19036104601
536870912

]
.

Therefore, if we choose sufficiently small values for the perturbation variables
successively such that

0 < λ� −θ � |ω| � |ξ| � 3/32, (3.8)

then the Liapunov constants of (3.7) have alternate signs, i.e.,

v1 = λ > 0, v3 < 0, v5 > 0, v7 < 0.

164 W. Niu and D. Wang

In this case, the stability of the focus (x̄, ȳ) of (3.7) turns over three times
and thus three limit cycles in a small neighborhood of (x̄, ȳ) can bifurcate. The
creation of small-amplitude limit cycles by choosing sufficiently small values for
the perturbation variables to change the stability of a focus is a typical technique
in bifurcation theory (see [18], [28, pp. 214–215], and [29, pp. 272–273]).

Theorem 3. Three limit cycles may bifurcate in the neighborhood of (x̄, ȳ) for
system (3.1) with (η, r, α, µ) = (1, r̄, ᾱ, µ̄) and small perturbation, where x̄, ȳ, r̄,
ᾱ, µ̄ are as in (3.6) and (3.5). The perturbed differential system (3.7) of (3.2)
remains polynomial and the perturbation variables λ, θ, ω, ξ may take sufficiently
small values satisfying (3.8).

3.3 Conditions for the Existence of Foci

Condition for (3.1) to have a focus of order 3. It has been shown in
Section 3.1 that if η = 1, then system (3.1) may have a focus of order 3. Now we
want to derive the condition on η for system (3.1) to be of center-focus type and
have a (positive) focus of order 3. This can be done by deriving the condition
on η such that a + d = 0, a2 + bc < 0, v3 = v5 = 0, v7 �= 0, r > 0, α > 0,
µ > 0, w > 0. To do so, we compute a minimal discriminant variety V of f1 = 0,
f2 = 0, f + δ2 = 0, v̄3 = 0, v̄5 = 0, v̄7 �= 0, r �= 0, α �= 0, µ �= 0, w �= 0, δ �= 0
(where v̄i is the numerator of vi for i = 3, 5, 7) using DV and check the signs of
the polynomials at the sample points of the cells of R decomposed by V . It is
then found that for any positive value of η, the semi-algebraic system a+ d = 0,
a2 + bc < 0, v3 = 0, v5 = 0, v7 �= 0, r > 0, α > 0, µ > 0, w > 0 has at least one
real solution for (r, α, µ, w).

Theorem 4. For any positive value of η, there exists at least one set of positive
values for the parameters r, α, µ such that system (3.1) is of center-focus type
and has a positive focus of order 3.

Absence of focus of order 4 for (3.1). Finally, we show that system (3.1)
does not have any focus of order greater than 3 and thus one cannot construct 4
small-amplitude limit cycles from a focus by perturbation. For this end, we do not
take any values for the parameters in (3.1). We want to decide whether there exist
real values of r, α, µ, η such that a+ d = 0, a2 + bc < 0, and v3 = v5 = v7 = 0, so
that the steady state (0, 0) of (3.2) is a center or a focus of order greater than 3.

Assume that αδηr �= 0. We compute the plex Gröbner basis G of {f1, f2, δ
2 +

f, v̄3, v̄5, v̄7, zαδηr − 1} under the variable order r ≺ α ≺ w ≺ δ ≺ µ ≺ η ≺
z using FGb, an efficient Gröbner basis package developed by Faugère (see
http://fgbrs.lip6.fr/jcf/Software/FGb): the basis is {1}. This implies that the
system a + d = 0, a2 + bc < 0, v3 = 0, v5 = 0, v7 = 0, r �= 0, α �= 0, η �= 0 has no
solution for r, α, µ, η, so the following result is proved.

Theorem 5. There are no nonzero values for the parameters r, α, µ, η such that
system (3.1) is of center-focus type and has a center or a focus of order greater
than 3.

Algebraic Analysis of Bifurcation and Limit Cycles for Biological Systems 165

It follows from this theorem that for system (3.1) one cannot construct more
than 3 small-amplitude limit cycles near a focus by perturbation.

4 Bifurcation and Limit Cycles for Kolmogorov
Prey-Predator and Lotka–Volterra Systems

4.1 Cubic Kolmogorov Prey-Predator System

To illustrate the applicability of our approach, in this subsection we discuss
briefly the analysis of another two-dimensional biological system, the cubic Kol-
mogorov prey-predator system constructed and analyzed by Lu and He in [12]
using similar algebraic methods. The system is of the form

dx
dt

= x (−2− a0 + a1 + a0x− 2 a1x+ y + a1x
2 + xy),

dy
dt

= y (2 + a2 − x− y − 2 a2y + a2y
2).

(4.1)

This system has a positive steady state (x̄, ȳ) = (1, 1) and it becomes of center-
focus type when a0 = 0. Under the condition a0 = 0, system (4.1) may be
transformed by a simple linear transformation x = Y +X + 1, y = −X + 1 into
the following canonical form

dX
dt

= Y − a2X
2 −XY + a2X

3,

dY
dt

= −X − (2− a1 − a2)X2 + 2 a1XY + (1 + a1)Y 2 − (1− a1 + a2)X3

− (2− 3 a1)X2Y − (1− 3 a1)XY 2 + a1Y
3.

(4.2)
By computing the Liapunov constants v3, v5, v7 of (4.2) and isolating the real
zeros of {v3, v5}, we can determine (a1, a2) ≈ (0.08020305719, 0.2955574645)
such that v3 = v5 = 0 and v7 < 0; in this case the steady state (1, 1) is an
asymptotically stable focus of order 3.

We can perturb (4.2) by adding λX to the first equation and λY to the second
equation, and substituting a1 with a1 + ω and a2 with a2 + ξ. Then, compute
the Lipunov constants v3, v5, v7 of the perturbed system and use DV to derive
conditions on ξ and ω such that v3 < 0, v5 > 0, v7 < 0 as we have done in Section
3.2. In this way, we find that, if the perturbation variables take sufficiently small
values such that

−0.001 < ξ � ω � −λ < 0,

then the Liapunov constants of the perturbed system have alternate signs, i.e.,

v1 = λ > 0, v3 < 0, v5 > 0, v7 < 0.

In this case, the stability of the focus (1, 1) turns over three times and thus three
limit cycles may bifurcate in a small neighborhood of (1, 1). This conclusion
confirms the result given in [12].

166 W. Niu and D. Wang

4.2 Bifurcation and Limit Cycles for High-Dimensional Systems

Many biological systems are high-dimensional (e.g., of the form (1.1) with n >
2). The analysis of bifurcation and limit cycles for such systems is much more
difficult. Some theorems and methods such as the generalized Poincaré–Bendixon
theorem and the describing function method may be applied for the analysis (see,
e.g., [17]), but they are applicable only to certain high-dimensional systems. The
methods of center manifold [4,10] and Liapunov–Schmidt reduction [5] allow one
to reduce any system of dimension n > 2 to a planar system without losing any
significant aspect of the dynamic characters. These methods in combination
with the method for planar systems presented in Section 2 can be used for the
algebraic analysis of bifurcation and limit cycles for high-dimensional systems.
Here we use the method of center manifold, which is convenient for our treatment
of planar systems using Liapunov constants.

To perform reduction, we need the condition under which the Jacobian matrix
J of system (1.1) has a pair of purely imaginary eigenvalues and all the other
eigenvalues with negative real parts. Such a condition may be given in terms of
the Hurwitz determinants and the constant term of the characteristic polynomial
of J according to a simple criterion established by El Kahoui and Weber [7]. The
criterion was derived for an arbitrary univariate polynomial A to have one pair of
purely imaginary roots and all the other roots with negative real parts by linking
the Hurwitz determinants ∆i of A to the principal subresultant coefficients of
A2 and A1, where A1(λ2) + λA2(λ2) = A(λ), and by investigating the behavior
of ∆i in the case where A has symmetric roots. Under the condition determined
by using El Kahoui and Weber’s criterion [7, Theorem 3.6], we can transform
system (1.1) to a system of special form and then reduce the transformed system
to a two-dimensional system of center-focus type by using the center manifold
theorem. We will see how the reduction proceeds from the example in the fol-
lowing subsection. Bifurcation and limit cycles for the obtained two-dimensional
system may be analyzed by using the method explained in Section 2.

4.3 Competitive Three-Dimensional Lotka–Volterra System

In this subsection, we use a competitive three-dimensional Lotka–Volterra system
(which models three mutually competing species) to illustrate the analysis of
bifurcation and limit cycles by using the center manifold theorem and algebraic
methods. The system has the form

dx1

dt
= x1 [(1− x1) + (1 − x2) + (1− x3)],

dx2

dt
= x2 [(1− x1) + (1 − x2) + 2 (1− x3)],

dx3

dt
= x3 [µ1 (1− x1) + µ2 (1− x2) + 3 (1− x3)],

(4.3)

where µ1 and µ2 are two real parameters. This system has been studied in [26,13]
(see also [17]) and it has a unique positive steady state (1, 1, 1).

Algebraic Analysis of Bifurcation and Limit Cycles for Biological Systems 167

By using the transformation x = x1− 1, y = x2− 1, z = x3− 1 and rewriting
the transformed system of (4.3) in the vector form, we obtain

dx

dt
= DAx, (4.4)

where

x =

⎡⎣xy
z

⎤⎦ , D =

⎡⎣1 + x
1 + y

1 + z

⎤⎦ , A =

⎡⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤⎦ .
The Jacobian matrix of (4.3) at (1, 1, 1) is the same as A. It is not difficult to
prove that the characteristic polynomial of A has a negative real root and a pair
of purely imaginary roots if and only if

det(A) = (A11 + A22 + A33) tr(A) < 0, (4.5)

where
tr(A) = a11 + a22 + a33, A11 = a22a33 − a23a32,

A22 = a11a33 − a13a31, A33 = a22a11 − a12a21.

Condition (4.5) is equivalant to

10− 3µ2 − 2µ1 = 0, µ2 − µ1 < 0.

Under this condition and substituting 5− 3
2µ2 for µ1, we may construct a trans-

formation matrix T according to the method described in [13], and system (4.3)
may be transformed by the transformation T x→ x into the following form

dx
dt

= −3 (µ2 − 2)
2 (µ2 − 4)

x− 2µ2 − 5
µ2 − 4

y + l1(x, y, z, µ2),

dy
dt

= − (µ2 − 10)(µ2 − 2)
4 (µ2 − 4)

x+
3 (µ2 − 2)
2 (µ2 − 4)

y + l2(x, y, z, µ2),

dz
dt

= −5 z + l3(x, y, z, µ2),

(4.6)

where li(x, y, z, µ2) are the terms nonlinear in x, y, z. Then by the center man-
ifold theorem [10, p. 152], we may analyze the bifurcation and limit cycles for
system (4.6) on a two-dimensional center manifold. The center manifold up to
approximation of order k can be described as

z = Ψ(x, y) =
k∑

i=2

i∑
j=0

cijx
i−jyj + h.o.t., (4.7)

where h.o.t. denotes the terms of higher order (> k). It follows that

dz
dt

=
∂Ψ

∂x

dx
dt

+
∂Ψ

∂y

dy
dt
. (4.8)

168 W. Niu and D. Wang

To compute for instance the first two Liapunov constants of the two-dimensional
system (to be determined), we need to consider the center manifold up to quartic
approximation. Substituting

dz
dt

= −5 z + l3(x, y, z, µ2) with z =
4∑

i=2

i∑
j=0

cijx
i−jyj

into (4.8) and comparing the coefficients of the two sides of the two equations in
x, y, dx/dt, dy/dt, we obtain a system of linear equations in cij (i = 2, . . . , 4, j =
0, . . . , 2). Then cij may be found as rational functions c̄ij of µ2, which are quite
complicated (for example, the numerator and the denominator of c̄20 both consist
of 29 terms and are of degree 28 in µ2). Substituting z = Ψ(x, y)|cij=c̄ij into the
first two equations in (4.6) results in a two-dimensional system of center-focus
type. This system may be further transformed to the canonical form by the linear
transformation

x =
4 (µ2 − 4)

(µ2 − 10)(µ2 − 2)
Y − 6

(µ2 − 10) δ
X, y = −1

δ
X, t =

τ

δ
,

where δ =
√
−µ2/2 + 1. Then by using the Epsilon function miscel[licon], we

can compute the first two Liapunov constants v3 and v5 of the two-dimensional
system in the canonical form.1 The numerators v̄3, v̄5 of v3, v5 and the denomi-
nator of v5 consist of 44, 197 and 35 terms and are of total degrees 16, 39 and 45
in δ, µ2, respectively. Computation using RS shows that {v̄3, δ2 + µ2/2− 1} has
7 isolated real zeros for (µ2, δ). Let the physical parameters µ2 and µ1 = 5− 3

2µ2

be assumed positive. Then there are two real values µ̄′
2 and µ̄′′

2 for µ2 such that
det(A) < 0, where

µ̄′
2 ∈

[
12946800109
8589934592

,
25893600219
17179869184

]
= I, µ̄′′

2 =
8
5
.

It is easy to verify by using RS that v̄3 = 0, v5 > 0 at µ̄′
2, v3 < 0 at the right end

of I, and the denominator of v3 has no real root in I. Therefore, the steady state
(1, 1, 1) is unstable and one can perturb µ̄′

2 slightly to µ̄∗
2 for µ2 such that v3 < 0,

while v5 > 0 remains true, so that one limit cycle bifurcates. Next, perturb
5 − 3

2 µ̄
∗
2 slightly to µ̄∗

1 for µ1 such that v3 < 0, v5 > 0 remain true, while the
real part of the two conjugate complex eigenvalues of the Jacobian matrix of the
two-dimensional system becomes positive. Then the second limit cycle bifurcates.
Our construction of two limit cycles here is similar to the constructions in [13].

For the other value µ̄′′
2 = 8/5 of µ2, det(A) < 0 and v3 = v5 = 0, so the steady

state is likely to be a center (see [26]).

1 Most of the computations discussed in this paper were performed step by step on a
laptop T2400 with 2 CPUs, 1.83 GHz and 987 MHz, and 2 GB RAM. Some of them
were verified by using different software tools. Each successful step of computation
usually takes no more than a few minutes. However, the computation of v5 here
requires nearly one hour.

Algebraic Analysis of Bifurcation and Limit Cycles for Biological Systems 169

Analysis of bifurcation and limit cycles for high-dimensional systems by using
the method of center manifold involves complicated calculations and the pro-
duced planar systems are usually large, so the Liapunov constants become very
large and unmanageable. For example, to construct three small-amplitude limit
cycles for a three-dimensional Lotka–Volterra system one needs to compute the
first three Liapunov constants and thus the center manifold needs to be approx-
imated up to order 6. In this case, the computation of the Liapunov constants
of the produced planar system even becomes rather difficult.

5 Concluding Remarks

In this paper, we have shown how to analyze bifurcation and limit cycles for two
biological systems of dimension 2 and another of dimension 3 using an algebraic
approach based on the methods of triangular decomposition, Gröbner bases,
discriminant varieties, real solution classification, and quantifier elimination by
partial CAD. Several efficient software packages including Epsilon, FGb, RS, DV,
and DISCOVERER in which some of these algebraic methods are implemented
have been used for the involved symbolic computations with semi-algebraic sys-
tems. The analysis of bifurcation and limit cycles is presented in detail for the
cubic self-assembling micelle system with chemical sinks and briefly for the cubic
Kolmogorov prey-predator system, both two-dimensional. It is proved that the
self-assembling micelle system may have a focus of order 3, from which three limit
cycles can be constructed by small perturbation, but this system cannot have
a focus of order greater than 3. Bifurcation analysis for the competitive Lotka–
Volterra system is carried out by using the method of center manifold that re-
duces the three-dimensional system to a two-dimensional one. Two limit cycles
are then constructed from the determined focus of order 2 by small perturbation.

The investigations described in this paper illustrate the applicability and lim-
itation of our algebraic approach for the analysis of bifurcation and limit cycles
for biological systems. This approach uses exact symbolic computation and en-
sures that all the obtained results are mathematically rigorous. It is a useful
alternative to the experimental approach based on numerical simulation and
visualization.

Although the algebraic methods underlying our approach have been well devel-
oped and are powerful, it is well known that symbolic computations involved in
these methods are very heavy in general. How to improve the methods by intro-
ducing new and specialized algebraic techniques, how to use them to analyze bi-
furcation and limit cycles for high-dimensional biological systems more effectively,
and how to deal with biological systems of the form (1.1) with pi being rational or
other functions are some of the questions that remain for future research.

References

1. Andronov, A.A., Leontovich, E.A., Gordon, I.I., Maier, A.G.: Theory of Bifurca-
tions of Dynamic Systems on a Plane. Israel Program of Scientific Translations,
Jerusalem (1971)

170 W. Niu and D. Wang

2. Ball, R., Haymet, A.D.J.: Bistability and hysteresis in self-assembling micelle sys-
tems: Phenomenology and deterministic dynamics. Phys. Chem. Chem. Phys. 3,
4753–4761 (2001)

3. Buchberger, B.: Gröbner bases: An algorithmic method in polynomial ideal the-
ory. In: Bose, N.K. (ed.) Multidimensional Systems Theory, pp. 184–232. Reidel,
Dordrecht (1985)

4. Carr, J.: Applications of Center Manifold Theory. Springer, New York (1981)
5. Chow, S.-N., Hale, J.K.: Methods of Bifurcation Theory. Springer, New York (1982)
6. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier

elimination. J. Symb. Comput. 12, 299–328 (1991)
7. El Kahoui, M., Weber, A.: Deciding Hopf bifurcations by quantifier elimination in

a software-component architecture. J. Symb. Comput. 30, 161–179 (2000)
8. Farr, W.W., Li, C., Labouriau, I.S., Langford, W.F.: Degenerate Hopf bifurcation

formulas and Hilbert’s 16th problem. J. Math. Anal. 20(1), 13–30 (1989)
9. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). J.

Pure Appl. Algebra 139, 61–88 (1999)
10. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 2nd edn. Springer, New

York (1998)
11. Lazard, D., Rouillier, F.: Solving parametric polynomial systems. J. Symb. Com-

put. 42, 636–667 (2007)
12. Lu, Z., He, B.: Multiple stable limit cycles for a cubic Kolmogorov prey-predator

system. J. Eng. Math. 18(4), 115–117 (2001)
13. Lu, Z., Luo, Y.: Two limit cycles in three-dimensional Lotka–Volterra systems.

Comput. Math. Appl. 44(1/2), 51–66 (2002)
14. Miller, R.K., Michel, A.N.: Ordinary Differential Equations. Academic Press, New

York, London (1982)
15. Niu, W.: Application of quantifier elimination and discriminant varieties to stability

analysis of biological systems. In: Wang, D., Zheng, Z. (eds.) Proceedings MACIS
2006, pp. 243–253. Beihang University, China (2006)

16. Niu, W., Wang, D.: Algebraic approaches to stability analysis of biological systems.
Math. Comput. Sci. 1(3), 507–539 (2008)

17. Shahruz, S.M., Kalkin, D.A.: Limit cycle behavior in three- or higher-dimensional
non-linear systems: The Lotka–Volterra example. J. Sound Vibration 246(2), 379–
386 (2001)

18. Shi, S.: A concrete example of the existence of four limit cycles for plane quadratic
systems. Sci. Sinica (A) 23, 153–158 (1980)

19. Wang, D.: A class of cubic differential systems with 6-tuple focus. J. Diff. Eqns. 87,
305–315 (1990)

20. Wang, D.: Mechanical manipulation for a class of differential systems. J. Symb.
Comput. 12, 233–254 (1991)

21. Wang, D.: Elimination Methods. Springer, Wien, New York (2001)
22. Wang, D.: Elimination Practice: Software Tools and Applications. Imperial College

Press, London (2004)
23. Wang, D., Xia, B.: Stability analysis of biological systems with real solution clas-

sification. In: Kauers, M. (ed.) Proceedings ISSAC 2005, pp. 354–361. ACM Press,
New York (2005)

24. Wang, D., Xia, B.: Algebraic analysis of stability for some biological systems. In:
Anai, H., Horimoto, K. (eds.) Proceedings AB 2005, pp. 75–83. Universal Academy
Press, Tokyo (2005)

25. Wu, W.-t.: Mathematics Mechanization. Science Press/Kluwer, Beijing (2000)

Algebraic Analysis of Bifurcation and Limit Cycles for Biological Systems 171

26. Xiao, D., Li, W.: Limit cycles for the competitive three dimensional Lotka–Volterra
system. J. Diff. Eqns. 164, 1–15 (2000)

27. Yang, L., Xia, B.: Real solution classifications of parametric semi-algebraic systems.
In: Dolzmann, A., Seidl, A., Sturm, T. (eds.) Algorithmic Algebra and Logic—
Proceedings A3L 2005, pp. 281–289. Herstellung and Verlag, Norderstedt (2005)

28. Ye, Y., Cai, S., Chen, L., Huang, K., Luo, D., Ma, Z., Wang, E., Wang, M., Yang,
X.: Theory of Limit Cycles. Amer. Math. Soc., Providence (1986)

29. Zhang, Z., Ding, T., Huang, W., Dong, Z.: Qualitative Theory of Differential Equa-
tions. Amer. Math. Soc., Providence (1992)

The Smallest Multistationary Mass-Preserving

Chemical Reaction Network

Anne Shiu

Dept. of Mathematics, University of California,
Berkeley, CA 94720-3840, USA

Abstract. Biochemical models that exhibit bistability are of interest
to biologists and mathematicians alike. Chemical reaction network the-
ory can provide sufficient conditions for the existence of bistability, and
on the other hand can rule out the possibility of multiple steady states.
Understanding small networks is important because the existence of mul-
tiple steady states in a subnetwork of a biochemical model can sometimes
be lifted to establish multistationarity in the larger network. This paper
establishes the smallest reversible, mass-preserving network that admits
bistability and determines the semi-algebraic set of parameters for which
more than one steady state exists.

Keywords: Chemical reaction network, bistability.

1 Introduction

Bistable biochemical models are often presented as the possible underpinnings
of chemical switches [2,17]. Systematic study of mass-action kinetics models–
which a priori may or may not admit multiple steady states–constitutes chemical
reaction network theory (CRNT), a subject pioneered by Horn, Jackson, and
Feinberg [13,16]. Certain classes of networks, such as those of deficiency zero,
do not exhibit multistationarity or other strange behaviors. A generalization
of deficiency-zero systems is the class of toric dynamical systems which have a
unique steady state [5]. See also the recent work of Craciun and Feinberg for
additional conditions that rule out multistationarity [6,7].

On the other hand, there are conditions that are sufficient for establishing
whether a network supports multiple steady states. The CRNT Toolbox de-
veloped by Feinberg and improved by Ellison implements the Deficiency One
and Advanced Deficiency Algorithms [9,12]; this software is available online [10].
For a large class of systems, the CRNT Toolbox either provides a witness for
multistationarity or concludes that it is impossible. For systems for which the
CRNT Toolbox is inconclusive, see the approach of Conradi et al. [4]. Related
work includes an algebraic approach that determines the full set of parameters
for which a system is multistationary; a necessary and sufficient condition for
multistationarity is the existence of a non-trivial sign vector in the intersection
of two subsets of Euclidean space [3].

K. Horimoto et al. (Eds.): AB 2008, LNCS 5147, pp. 172–184, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Smallest Multistationary Mass-Preserving Chemical Reaction Network 173

To model biological processes, one typically reverse-engineers a system of non-
linear differential equations that exhibit specific dynamical behavior, such as
bistability or oscillations, observed in experiments. For example, Segel proposes
a small immune network consisting only two cell types, which has three stable
steady states, corresponding to “normal,” “vaccinated,” and “diseased” states
[19]. Similarly, the Brusselator is a mass-action kinetics network with a stable
limit cycle [11].

This paper focuses on the smallest mass-action kinetics networks that admit
multiple steady states. Section 2 provides an introduction to chemical reaction
network theory. A special network called the Square is shown in Section 3 to be
a smallest reversible multistationary chemical reaction network. Sections 4 and 5
determine precisely which parameters of the Square give rise to multiple steady
states.

2 Chemical Reaction Network Theory

We now give an introduction to chemical reaction network theory. Before giving
precise definitions, we present an intuitive example that illustrates how a chemi-
cal reaction network gives rise to a dynamical system. An example of a chemical
reaction, as it usually appears in the literature, is the following:

3A+ CA+B
κ ��

In this reaction, one unit of chemical species A and one of B react (at reaction
rate κ) to form three units of A and one of C. The concentrations cA, cB, and cC
will change in time as the reaction occurs. Under the assumption of mass-action
kinetics, species A and B react at a rate proportional to the product of their
concentrations, where the proportionality constant is the rate constant κ. Noting
that the reaction yields a net change of two in the amount of A, we obtain the
first differential equation in the following system:

d

dt
cA = 2κcAcB,

d

dt
cB = − κcAcB,

d

dt
cC = κcAcB.

The other two equations arise similarly. Next we include the reverse reaction
and switch from additive to multiplicative notation to highlight the monomials
that appear in our differential equations; the chemical reaction networks in this
paper will appear with the following notation:

c3AcCcAcB
κ

κ′

��
��

174 A. Shiu

This network defines differential equations that are each a sum of the mono-
mial contribution from the reactant of each chemical reaction in the network:

d

dt
cA = 2κcAcB − 2κ′c3AcC ,

d

dt
cB = − κcAcB + κ′c3AcC ,

d

dt
cC = κcAcB − κ′c3AcC .

The recipe for obtaining these differential equations from a chemical reaction
network easily generalizes from this example. However, in order to display the
linearity hidden in these non-linear equations, the equations will appear in a
different but equivalent form in (1) below.

We now establish the notation for this paper, following [5]. A chemical reaction
network is a finite directed graph whose vertices are labeled by monomials and
whose edges are labeled by parameters. Specifically, the digraph is denoted G =
(V,E), with vertex set V = {1, 2, . . . , n} and edge set E ⊆ {(i, j) ∈ V × V : i �=
j}. The vertex i of G represents the ith chemical complex and is labeled by the
monomial

cyi = cyi1
1 cyi2

2 · · · cyis
s .

This yields Y = (yij), an n× s-matrix of non-negative integers. The unknowns
c1, c2, . . . , cs represent the concentrations of the s species in the network, and we
regard them as functions ci(t) of time t. The monomial labels form the entries
in the following row vector:

Ψ(c) =
(
cy1 , cy2 , . . . , cyn

)
.

A network is said to be mass-preserving if all monomials cyi have the same
degree. Each directed edge (i, j) ∈ E is labeled by a positive parameter κij which
represents the rate constant in the reaction from the i-th chemical complex to
the j-th chemical complex. A network is reversible if the graph G is undirected,
in which case each undirected edge has two labels κij and κji. Let Aκ denote the
negative of the Laplacian of the digraph G. In other words Aκ is the n×n-matrix
whose off-diagonal entries are the κij and whose row sums are zero. Mass-action
kinetics specified by the digraph G is the dynamical system defined by

dc

dt
= Ψ(c) ·Aκ · Y. (1)

By decomposing the mass-action equations in this way, we see that they are linear
in the κij by way of the matrix Aκ. A steady state (or equilibrium) is a positive
concentration vector c ∈ Rs

>0 at which the equations (1) vanish. These equations
remain in the (stoichiometric) subspace S spanned by the vectors yi− yj (where
(i, j) is an edge of G). In the earlier example, yi − yj = (−2,−1, 1), meaning
that whenever a reaction occurs, two units of A and one of B are lost, while one
unit of C is formed (or vice-versa). Therefore, a trajectory c(t) beginning at a

The Smallest Multistationary Mass-Preserving Chemical Reaction Network 175

positive vector c(0) = c0 remains in the invariant polyhedron P := (c0+S)∩Rs
≥0.

Multistationarity refers to the existence of more than one steady state in some
invariant polyhedron. A chemical reaction network may admit multistationarity
for all, some, or no choices of positive parameters κij .

Horn initiated the investigation of small chemical reaction networks by enu-
merating networks comprised of “short complexes,” those whose corresponding
monomials cy have degree at most two [14,15]. Networks that consist of at most
three short complexes do not permit multiple steady states.

The next section establishes that the following graph, which we call the Square,
depicts a smallest reversible multistationary chemical reaction network:

c31 c1c
2
2

c32c21c2

κ12

κ21

κ23κ32

κ34

κ43

κ41 κ14

�� ��

�� ��

��

��

��

��

In the horizontal reactions, two units of species one are transformed into two of
species two (or vice-versa), while a third unit remains unchanged by the reaction.
In the vertical reactions, only one is transformed.

The Square appeared in non-reversible form as networks 7-3 in [16] and 4.2
in [11]. The matrices whose product defines the dynamical system (1) follow:

Ψ(c) =
(
c31, c1c

2
2, c

3
2, c

2
1c2

)
,

Aκ =

⎛⎜⎜⎝
−κ12 − κ14 κ12 0 κ14

κ21 −κ21 − κ23 κ23 0
0 κ32 −κ32 − κ34 κ34

κ41 0 κ43 −κ41 − κ43

⎞⎟⎟⎠ ,

Y =

⎛⎜⎜⎝
3 0
1 2
0 3
2 1

⎞⎟⎟⎠ .

There may be two or even three steady states in each invariant polyhedron P ;
Example 1 in the next section provides a choice of positive rate constants κij

that give rise to three steady states. Sections 4 and 5 determine precisely which
parameters give rise to two steady states and which yield three. Moreover, we
compute this semi-algebraic parametrization for all networks on the same four
vertices as the Square, in other words, networks with complexes c31, c1c

2
2, c

3
2,

and c21c2. The parametrization is captured in Table 1 and can be computed “by
hand,” but larger systems may require techniques of computational real algebraic
geometry [1]. For example, our problem of classifying parameters according to
number of steady states is labeled as Problem P2 in [21], where it is addressed
with computer algebra methods.

176 A. Shiu

3 The Smallest Multistationary Network

Following equation (7) of [5], the Matrix-Tree Theorem defines the following
polynomials in the rate constants of the Square:

K1 = κ23κ34κ41 + κ21κ34κ41 + κ21κ32κ41 + κ21κ32κ43,

K2 = κ14κ32κ43 + κ12κ34κ41 + κ12κ32κ41 + κ12κ32κ43,

K3 = κ14κ23κ43 + κ14κ21κ43 + κ12κ23κ41 + κ12κ23κ43,

K4 = κ14κ23κ34 + κ14κ21κ34 + κ14κ21κ32 + κ12κ23κ34.

Theorem 7 of [5] provides an ideal MG that is toric in these Ki coordinates, and
the variety of MG is the moduli space of toric dynamical systems on the Square.
In this case, the ideal MG is the twisted cubic curve in the Ki coordinates,
generated by the 2×2-minors of the following matrix:(

K1 K2 K4

K4 K3 K2

)
. (2)

Theorem 7 of [5] says that for a given choice of positive rate constants κij ,
the equations (1) define a toric dynamical system if and only if the minors of
the matrix (2) vanish. In general the codimension of MG is the deficiency of a
network; see Theorem 9 of [5]. Here the deficiency is two. Recall that a toric
dynamical system is a dynamical system (1) for which the algebraic equations
Ψ(c) · Aκ = 0 admit a strictly positive solution c∗ ∈ Rs

>0; this solution is called
a complex balancing steady state [16]. In this case there is a unique steady state
in each invariant polyhedron P . Toric dynamical systems exhibit further nice
properties; for details, see [5,13,16].

It is no coincidence that the original monomials of the Square, namely c31,
c1c

2
2, c

3
2, c

2
1c2, parametrize the twisted cubic curve. In fact, the following general

result follows from Theorem 9 in [5].

Proposition 1. Assume that a chemical reaction network G is strongly con-
nected and all monomials cyi have the same total degree. Then the toric variety
parametrized by Ψ(c) coincides with the variety of MG.

For the Square, each one-dimensional invariant polyhedron P is defined by some
positive concentration total T = c1 + c2. The steady states in P correspond
precisely to the positive roots of the following cubic polynomial:

pS(x) = (−2κ12 − κ14)x3 + (κ41 − κ43)x2 + (2κ21 − κ23)x+ (κ32 + 2κ34);

this polynomial arises by substituting x := c1/c2 into the equation dc1/dt =
−dc2/dt. From this point of view, we reach some immediate conclusions. First,
the algebraic degree of this system is three, which bounds the number of steady
states. Second, the number of steady states and their stability depend only on
the rate parameters κij , and not on the invariant polyhedron P or equivalently
the choice of total concentration T . Also, by noting that pS(x) is positive at

The Smallest Multistationary Mass-Preserving Chemical Reaction Network 177

x = 0 and is negative for large x, we see that the Square admits at least one
steady state for any choice of rate constants. Recall that the discriminant of a
univariate polynomial f is a polynomial that vanishes precisely when f has a
multiple root over the complex numbers [20]. Maple computes the discriminant
of pS to be the following polynomial:

− 108κ2
12κ

2
32 − 432κ2

12κ32κ34 − 432κ2
12κ

2
34 − 108κ12κ14κ

2
32

− 432κ12κ14κ32κ34 − 432κ12κ14κ
2
34 + 64κ12κ

3
21 − 96κ12κ

2
21κ23 + 48κ12κ21κ

2
23

− 72κ12κ21κ32κ41 + 144κ12κ21κ32κ43 − 144κ12κ21κ34κ41 + 288κ12κ21κ34κ43

− 8κ12κ
3
23 + 36κ12κ23κ32κ41 − 72κ12κ23κ32κ43 + 72κ12κ23κ34κ41

− 144κ12κ23κ34κ43 − 27κ2
14κ

2
32 − 108κ2

14κ32κ34 − 108κ2
14κ

2
34 + 32κ14κ

3
21

− 48κ14κ
2
21κ23 + 24κ14κ21κ

2
23 − 36κ14κ21κ32κ41 + 72κ14κ21κ32κ43

− 72κ14κ21κ34κ41 + 144κ14κ21κ34κ43 − 4κ14κ
3
23 + 18κ14κ23κ32κ41

− 36κ14κ23κ32κ43 + 36κ14κ23κ34κ41 − 72κ14κ23κ34κ43 + 4κ2
21κ

2
41

− 16κ2
21κ41κ43 + 16κ2

21κ
2
43 − 4κ21κ23κ

2
41 + 16κ21κ23κ41κ43 − 16κ21κ23κ

2
43

+ κ2
23κ

2
41 − 4κ2

23κ41κ43 + 4κ2
23κ

2
43 − 4κ32κ

3
41 + 24κ32κ

2
41κ43 − 48κ32κ41κ

2
43

+ 32κ32κ
3
43 − 8κ34κ

3
41 + 48κ34κ

2
41κ43 − 96κ34κ41κ

2
43 + 64κ34κ

3
43.

As pS is cubic and has at least one positive root, its discriminant is negative
if and only if pS has one real root and one pair of complex conjugate roots; in
this case, the Square has precisely one steady state. When the discriminant is
non-negative, the system may admit one, two, or three steady states; we analyze
this case fully in the next section.

Example 1. Consider the following rate constants for the Square:

(κ12, κ14, κ21, κ23, κ32, κ34, κ41, κ43) = (1/4, 1/2, 1, 13, 1, 2, 8, 1).

This yields pS(x) = −x3 +6x2−11+6, which has three positive roots: x = 1, 2,
and 3. This is an instance of bistability; it is easy to determine that x = 1 and
x = 3 correspond to stable steady states, while the third is unstable. In the next
section we determine the conditions for an arbitrary vector of rate constants to
admit one, two, or three steady states.

Recalling the definitions given earlier, the Square has the following properties:
the number of complexes is n = 4, the number of connected components of G
is l = 1, the number of species is s = 2, and the dimension of any invariant
polyhedron is σ = 1. The main result of this section states that this network is
minimal with respect to each of these four parameters.

Theorem 1. The Square is a smallest multistationary, mass-preserving, re-
versible chemical reaction network with respect to each of the following param-
eters: the number of complexes, the number of connected components of G, the
number of species, and the dimension of an invariant polyhedron.

178 A. Shiu

Proof. First l = 1 and σ = 1 are clearly minimal. Next any mass-preserving
system with n ≤ 2 or s = 1 has no reactions or has deficiency zero. Finally, an
n = 3 system has deficiency zero or one; in the deficiency one case, the Deficiency
One Theorem of Feinberg rules out the possibility of multistationarity [12]. ��

Among all mass-preserving multistationary systems that share these four mini-
mal parameters, the Square is distinguished because its monomials are of mini-
mal degree. A connected network of lower degree would consist of at most three
of Horn’s “short” complexes [14].

We now discuss the possible connection of the Square to biology by comparing
it to the following simple network:

cxcy � c2y (3)

cx � cy.

Network (3) is a modified version of the following molecular switch mechanism
proposed by Lisman [18]:

cxcy � cxy −→ c2y

cycp � cyp −→ cxcp.

Here x denotes a kinase in an inactive state, y is the active version, and p is a
phosphatase. In the first reactions, y catalyzes the phosphorylation of x, turning
x into y; the second reactions correspond to dephosphorylation. By skipping
the binding steps, making all reactions reversible, and noting that removing p
effectively scales the second reaction rate constant, we obtain the network (3).
The reactions of (3) are similar to c21cy � c32 and c31 � c32 are reactions in the
generalization of the Square network examined in the next section; this suggests
the possible biological relevance of the reactions of the Square. For example
c21c2 −→ c32 can be viewed as a reaction in which species two catalyzes the
reaction c21 −→ c22. Such a positive feedback loop–in which a high amount of
some species y encourages the further production of the same species–occurs in
biological settings. For example, the recent work of Dentin et al. finds that high
glucose levels in diabetic mice promote further glucose production in the liver,
which is triggered by the binding of glucose (which we may view as y) to the
transcription factor CREB (x) [8].

This paper focuses on the Square and more generally, the networks that share
the same complexes as the Square. In the following section, we shall determine
which of these are bistable. The one with the fewest edges is the only one with
two connected components rather than one, and is featured in the last section.

4 Parametrizing Multistationarity

The aim of this section is similar to that of Conradi et al. [3], which determined
the full set of parameters that give rise to multistationarity for a biochemical
model describing a single layer of a MAPK cascade. However we additionally

The Smallest Multistationary Mass-Preserving Chemical Reaction Network 179

determine the precise number of steady states: zero, one, two, or three, and
determine their stability. The family of networks we consider are those that have
the same four complexes as the Square. In other words, we classify subnetworks
of the complete network depicted here:

c31 c1c
2
2

c32c21c2

�� ��

�� ��

��

��

��

��
���

��
��

��
��

��
���������������

�����������������
��

��
��

��
�

Each of the twelve rate constants κij is permitted to be zero, which defines the
parameter space R12

≥0 of dynamical systems. The main result of this section is
summarized in Table 1, which is the semi-algebraic decomposition of the twelve-
dimensional parameter space according to the number of steady states of the
dynamical system. The conditions listed there make use of certain polynomials
in the rate constants, including the signed coefficients of the polynomial p:

S0 = 2κ12 + 3κ13 + κ14,

S1 = κ41 − κ42 − 2κ43,

S2 = −2κ21 + κ23 − κ24,

S3 = 3κ31 + κ32 + 2κ34,

where p generalizes the polynomial pS from the Square:

p(x) = −S0x
3 + S1x

2 − S2x+ S3.

We now derive the entries of Table 1 for those networks without boundary
steady states (this includes the case of the Square). These cases are precisely
the ones in which S0 > 0 and S3 > 0. Our approach is simply to determine the
conditions on the coefficients of p for the polynomial to have one, two, or three
positive roots.

In this twelve-parameter case, the discriminant of p is a homogeneous degree-
four polynomial with 113 terms. For the same reason as that for the Square,
there is one steady state when the discriminant is negative. Now assume that the
discriminant is non-negative. Then p has three real roots, counting multiplicity;
recall that the positive ones correspond to the steady states of the chemical
reaction network. Now the constant term of a monic cubic polynomial is the
negative of the product of its roots, so by examining the sign of the constant
term of p, we conclude that p has either one positive root and two negative roots,
or three positive roots. Continuing the sign analysis with the other coefficients
of p, we conclude that there are three positive roots if and only if S1 > 0 and
S2 > 0. We proceed by distinguishing between the cases when the discriminant
is positive or zero. If the discriminant is positive, then we have derived criteria
for having one or three steady states; this is because the roots of p are distinct.

180 A. Shiu

Table 1. Classification of dynamical systems arising from non-trivial (having at least
one reaction) networks with complexes c3

1, c1c
2
2, c3

2, c2
1c2. Listed are the number of

steady states and the number of steady states that are stable. The discriminant of p
is denoted by D. The signed coefficients of p are denoted by S0, S1, S2, and S3. The
triple root condition consists of the equations (4).

Condition Steady states Stable states

D < 0 and S0S3 = 0 0 0
D < 0 and else 1 1

D > 0 and S0, S1, S2, S3 > 0 3 2
D > 0 and S0, S1, S2 > 0 and S3 = 0 2 1
D > 0 and S1, S2, S3 > 0 and S0 = 0 2 1
D > 0 and S0 = S3 = 0 and S1S2 < 0 0 0

D > 0 and else 1 1

D = 0 and S0, S1, S2, S3 > 0 and triple root condition 1 1
D = 0 and S0, S1, S2, S3 > 0 without triple root condition 2 1

D = 0 and S1 ≤ S0 = 0 ≤ S2 and S3 > 0 0 0
D = 0 and S1 ≤ S3 = 0 ≤ S2 and S0 > 0 0 0

D = 0 and else 2 1

If the discriminant is zero, then in the case of one positive root, the two negative
roots come together (one steady state). In the case of discriminant zero and three
positive roots, then at least two roots come together (at most two steady states);
a triple root occurs if and only if the following triple root condition holds:

3S0S2 = S2
1 and 27S2

0S3 = S3
1 . (4)

These equations are precisely what must hold in order for p to have the form
p(x) = −(x − α)3. Finally, stability analysis in this one-dimensional system is
easy, and this completes the analysis for the networks without boundary steady
states. The remaining cases can be classified similarly to complete the entries
of Table 1. To parametrize the behavior of the Square, we simply reduce to the
case when each of its parameters κ12, κ14, κ21, κ23, κ32, κ34, κ41, and κ43 are
positive and all others are zero.

By determining which sign vectors in (0,+)12 can be realized by a vector
of parameters that yields multistationarity, we find a necessary and sufficient
condition for a directed graph on the four complexes of the Square to admit
multistationarity. This condition is that the graph must include the edges labeled
by κ23 and κ41 and at least one edge directed from the vertex c31 or c32. In this
case, for appropriate rate parameters arising from Table 1, the dynamical system
has multiple steady states. Therefore, we can enumerate the reversible networks
on the four complexes that admit multistationarity: there is one network with
all six (bi-directional) edges, four with five edges, six (including the Square)
with four edges, four with three edges, and one with two edges. These sixteen
networks comprise the family of “smallest” multistationary networks. For the
two-edge network, the decomposition from Table 1 is depicted in Figure 1 in the
next section.

The Smallest Multistationary Mass-Preserving Chemical Reaction Network 181

5 Subnetworks of the Square

Subnetworks of the Square are obtained by removing edges. From the parametri-
zation in the previous section, we know that up to symmetry between c1 and c2,
only two reversible subnetworks of the Square exhibit multiple steady states.

The first network is obtained by removing the bottom edge of the Square. In
other words Aκ is replaced by

Aκ =

⎛⎜⎜⎝
−κ12 − κ14 κ12 0 κ14

κ21 −κ21 − κ23 κ23 0
0 κ32 −κ32 0
κ41 0 0 −κ41

⎞⎟⎟⎠ .

In this subnetwork, the four parameters of Theorem 1 are the same as those
of the Square. The system is a toric dynamical system if and only if the following
four binomial generators of MG vanish:

κ14κ32 − κ23κ41,

κ12κ32κ41 − κ14κ21κ23,

κ2
14κ21 − κ12κ

2
41,

κ12κ
2
32 − κ21κ

2
23.

We note that both κ23 times the third binomial and κ14 times the fourth bi-
nomial are in the ideal generated by the first two binomials. Therefore, an
assignment of positive parameters for this network defines a toric dynamical
system if and only if the following two equations hold: κ14κ32 = κ23κ41 and
κ12κ32κ41 = κ14κ21κ23.

The second subnetwork of the Square is obtained by removing one additional
edge, the one between the vertices labeled by c31 and c1c

2
2. The new Aκ is

Aκ =

⎛⎜⎜⎝
−κ14 0 0 κ14

0 −κ23 κ23 0
0 κ32 −κ32 0
κ41 0 0 −κ41

⎞⎟⎟⎠ .

The network graph G is now disconnected, and p reduces to

p(x) = − κ14x
3 + κ41x

2 − κ23x+ κ32.

The discriminant of p is

D = −27κ2
14κ

2
32 − 4κ14κ

3
23 + 18κ14κ23κ32κ41 + κ2

23κ
2
41 − 4κ32κ

3
41.

Further, the toric condition reduces to the single equation

κ23κ41 = κ14κ32,

which defines the Segre variety. A single equation suffices to define the space
of toric dynamical systems; this corresponds to the fact that this subnetwork

182 A. Shiu

has deficiency one, while the previous subnetwork has deficiency two. The semi-
algebraic decomposition of the previous section for this four-parameter network
can be depicted in three dimensions by setting one parameter to be one, in other
words, by scaling the equations (1); this is displayed in Figure 1.

2
1.5

2
0

0.5

1.5
1

1

k14

1.5

k32

k23

2

1
0.5

0.5 0
0

Fig. 1. This depicts the semi-algebraic decomposition of Section 4 for the subnetwork
of the Square in which only the vertical edges remain and κ41 = 1. At the left is
the discriminant-zero locus. Parameter vectors lying below this surface give rise to
dynamical systems with three steady states. Those above the surface yield one steady
state; these include parameters of the toric dynamical systems, which are the points
on the Segre variety which appears on the right. Parameters on the discriminant-zero
locus correspond to systems with either one (if 3κ14κ32 = κ23) or two steady states.
This figure was created using Maple.

We remark that Horn and Jackson performed the same parametrization for
the following special rate constants:

(κ12, κ14, κ21, κ23, κ32, κ34, κ41, κ43) = (ε, 0, 1, 0, ε, 0, 1, 0),

where ε > 0. Their results are summarized as Table 1 in [16]. Their analysis
notes that any instance of three steady states can be lifted to establish the same
in the (reversible) Square. In other words, in a small neighborhood in R8

≥0 of
a vector of parameters that yields three steady states of the directed Square,
there is a vector of parameters for the bi-directional Square that also exhibits
multistationarity.

The specific criterion for when lifting of this form is possible appears in Theo-
rem 2 of Conradi et al. [4]. As this approach is widely applicable, further analysis

The Smallest Multistationary Mass-Preserving Chemical Reaction Network 183

of small networks may be fruitful for illuminating the dynamics of larger bio-
chemical networks.

We have seen that the family of Square networks is the smallest class of
bistable mass-action kinetics networks. Whether nature has implemented one of
these (perhaps with additional components to provide robustness) in a biological
setting is as yet unknown, but it is also remarkable that these networks exhibit
a simple switch mechanism, which we now explain. Consider the case of three
steady states. The corresponding positive roots x1 < x2 < x3 of p in Section 4
are the equilibria for the ratio of concentrations c1/c2. To switch from the low
stable equilibrium x1 to the high stable equilibrium x3 is easy: simply increase
the concentration ratio c1/c2 past x2, and the dynamics will do the rest.

Acknowledgments. Bernd Sturmfels posed the question of determining the
smallest bistable network and provided guidance for this work. We thank Carsten
Conradi, Gheorge Craciun, Lior Pachter, and Jörg Stelling for helpful discus-
sions. Anne Shiu was supported by a Lucent Technologies Bell Labs Graduate
Research Fellowship.

References

1. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Springer,
Berlin (2006)

2. Cherry, J., Adler, F.: How to make a biological switch. J. Theor. Biol. 203(2),
117–133 (2000)

3. Conradi, C., Flockerzi, D., Raisch, J.: Multistationarity in the activation of
a MAPK: parametrizing the relevant region in parameter space. Math. Bio-
sciences 211(1), 105–131 (2008)

4. Conradi, C., Flockerzi, D., Raisch, J., Stelling, J.: Subnetwork analysis reveals
dynamic features of complex (bio)chemical networks. P. Natl. Acad. Sci. 104(49),
19175–19180 (2007)

5. Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B.: Toric dynamical systems
(arXiv:0708.3431)

6. Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction net-
works: I. The injectivity property. SIAM J. Appl. Math. 65(5), 1526–1546 (2005)

7. Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction net-
works: II. The species-reactions graph. SIAM J. Appl. Math. 66(4), 1321–1338
(2006)

8. Dentin, R., Hedrick, S., Xie, J., Yates, J., Montminy, M.: Hepatic Glucose Sensing
via the CREB Coactivator CRTC2. Science 319(5868), 1402–1405 (2008)

9. Ellison, P.: The advanced deficiency algorithm and its applications to mechanism
discrimination. PhD Thesis, University of Rochester (1998)

10. Ellison, P., Feinberg, M.: CRNT Toolbox,
http://www.che.eng.ohio-state.edu/∼feinberg/crnt/

11. Feinberg, M.: Chemical oscillations, multiple equilibria, and reaction network struc-
ture. In: Stewart, W., Rey, W., Conley, C. (eds.) Dynamics of reactive systems,
pp. 59–130. Academic Press, New York (1980)

12. Feinberg, M.: The existence and uniqueness of steady states for a class of chemical
reaction networks. Arch. Ration. Mech. Anal. 132, 311–370 (1995)

http://www.che.eng.ohio-state.edu/~feinberg/crnt/

184 A. Shiu

13. Feinberg, M.: Lectures on chemical reaction networks. Notes of lectures given at the
Mathematics Research Center of the University of Wisconsin in 1979 (1979), http://
www.che.eng.ohio-state.edu/~feinberg/LecturesOnReactionNetworks

14. Horn, F.: Dynamics of open reaction systems II. Stability and the complex graph.
Proc. Royal Soc. A. 334, 313–330 (1973)

15. Horn, F.: Stability and complex balancing in mass-action systems with three com-
plexes. Proc. Royal Soc. A. 334, 331–342 (1973)

16. Horn, F., Jackson, R.: General mass action kinetics. Arch. Rat. Mech. Anal. 47,
81–116 (1972)

17. Laurent, M., Kellershohn, N.: Multistability: a major means of differentiation and
evolution in biological systems. Trends Biochem. Sci. 24, 418–422 (1999)

18. Lisman, J.: A Mechanism for Memory Storage Insensitive to Molecular Turnover:
A Bistable Autophosphorylating Kinase. Proc. Natll. Acad. Sci. 82(9), 3055–3057
(1985)

19. Segel, L.: Multiple attractors in immunology: theory and experiment. Biophys.
Chem. 72(1-2), 223–230 (1998)

20. Sturmfels, B.: Solving systems of polynomial equations. American Mathematical
Society, Providence (2002)

21. Wang, D., Xia, B.: Stability analysis of biological systems with real solution clas-
sification. In: ISSAC 2005: Proceedings of the 2005 international symposium on
Symbolic and algebraic computation, pp. 354–361. ACM, New York (2005)

http://www.che.eng.ohio-state.edu/~feinberg/LecturesOnReactionNetworks
http://www.che.eng.ohio-state.edu/~feinberg/LecturesOnReactionNetworks

Local Structure and Behavior of Boolean

Bioregulatory Networks

Heike Siebert

DFG Research Center Matheon,
Freie Universität Berlin, Arnimallee 6, D-14195 Berlin, Germany

siebert@mi.fu-berlin.de

Abstract. A well-known discrete approach to modeling biological regula-
tory networks is the logical framework developed by R. Thomas. The net-
work structure is captured in an interaction graph, which, together with a
set of Boolean parameters, gives rise to a state transition graph describing
the dynamical behavior. Together with E. H. Snoussi, Thomas later ex-
tended the framework by including singular values representing the thresh-
old values of interactions. A systematic approach was taken in [10] to link
circuits in the interaction graph with character and number of attractors
in the state transition graph by using the information inherent in singu-
lar steady states. In this paper, we employ the concept of local interaction
graphs to strengthen the results in [10]. Using the local interaction graph
of a singular steady state, we are able to construct attractors of the reg-
ulatory network from attractors of certain subnetworks. As a comprehen-
sive generalization of the framework introduced in [10], we drop constraints
concerning the choice of parameter values to include so-called context sen-
sitive networks.

1 Introduction

In biology, regulatory networks are often visualized as cartoons that illustrate
which components of a system interact with each other. A verbal description
of the system’s behavior clarifies the processes captured in the cartoon. Logical
approaches are an intuitive way to model such systems in a mathematical frame-
work. In the 70’s, R. Thomas introduced a discrete formalism, which has been
continuously further developed and successfully applied to biological problems
(see [13], [14] and references therein). Network components are represented by
Boolean variables. The structure of the network is captured in a directed, signed
graph called interaction graph. Edges represent interactions between compo-
nents. The sign of an edge signifies whether an activating or inhibiting influence
is exerted, provided the tail component of the edge is active, i. e., has value 1.
Boolean parameter values specify a function that determines the dynamical be-
havior. Biologically realistic rules are employed to derive a state transition graph
from the Boolean function, which amounts to a non-deterministic representation
of all possible behaviors of the system.

This framework has been extended over the years. Network components were
allowed to have more than two activity levels, interactions were associated with a

K. Horimoto et al. (Eds.): AB 2008, LNCS 5147, pp. 185–199, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

186 H. Siebert

threshold value determining when the interaction becomes effective. R. Thomas
and E.H. Snoussi used the threshold values, which they called singular values, to
obtain a better understanding of the system’s dynamics. In [11], they focussed on
the relation between singular steady states and feedback circuits in the interac-
tion graph of the network. We adapted these ideas to a Boolean setting in [10].
Despite the high level of abstraction, the introduction of singular states proved a
useful tool for uncovering relations between structure and dynamics of bioregu-
latory networks. In this paper, we generalize and develop the results in [10] fur-
ther. As a first step, we allow characteristics, i. e., the sign of network interactions
to depend on the current state of the system. Whether a component has an ac-
tivating or inhibiting influence on its target may depend on the activity of cer-
tain co-factors. A well-known example is the DNA-binding protein TCF which
can repress as well as activate the same target genes. TCF acts as activator in the
presence of β-catenin, induced by WNT signaling, while the co-expression of the
protein TLE converts TCF into a repressor. We call systems including such am-
biguous interactions context sensitive. Adaptations in the definition of interaction
graphs, parameters and singular steady states allow us to include context sensi-
tive systems in our considerations. Furthermore, we exploit the concept of local
interactions graphs. It was already successfully used in [6] and [5], and allows for
a better understanding of what structures in the interaction graph influence the
system’s behavior in a given state. This view enables us to focus on the behavior
of subnetworks obtained by projection, and from that draw conclusions about the
network dynamics.

The organization of the paper is as follows. in Sect. 2 we introduce the Boolean
framework used to describe (possibly context sensitive) regulatory networks. We
show in Sect. 3 that the set of functions arising from interaction graphs and
associated parameter values corresponds to the set of Boolean function f : Bn →
Bn. We then define the local interaction graph of a given state. Subsequently,
we introduce singular steady states. In Sect. 5, we employ the concept of local
interaction graphs for singular steady states. The resulting view on the network
dynamics allows us to derive certain characteristics of the state transition graph
from the behavior of suitable subnetworks. We end the paper with concluding
remarks and perspectives for future work.

2 Regulatory Networks

As already mentioned, a directed, signed graph is used in the Thomas formalism
to capture the network structure of a regulatory system. We are now interested
in a more general representation that allows for the interaction sign to depend
on the current state of the system. To accurately describe the structure of such
context sensitive networks we use directed multigraphs that allow for parallel
edges. Multigraphs have been used in a similar way in [2]. We set B := {0, 1}.
Definition 1. An interaction (multi-)graph (or bioregulatory (multi-)graph) I
is a labeled directed multigraph with vertex set V := {α1, . . . , αn}, n ∈ IN, and
edge set E ⊆ V × V × {+,−}.

Local Structure and Behavior of Boolean Bioregulatory Networks 187

The vertices α1, . . . , αn represent the components of the regulatory network such
as genes, RNA, or proteins. We view each component αi as a variable that adopts
values in B. The value 1 signifies that the component is active, i. e., it influences its
interaction targets according to the interaction signs. For example, if some sub-
stance concentration needs to cross a threshold in order to influence some target
component, then the corresponding Boolean value is 0 as long as the concentration
is below, and 1 if the concentration is above the threshold.

When analyzing the interaction graph of a network we are interested in certain
structural motives. We focus on so-called (feedback) circuits. Here, a circuit is
a tuple (e1, . . . , er) of edges ei = (ki, li, ε) ∈ E such that all ki, i ∈ {1, . . . , r},
are pairwise distinct, and li = ki+1 for all i ∈ {1, . . . , r} modulo r. The sign of
a circuit is the product of the signs of its edges. Note that in a multigraph a
circuit is not uniquely determined by its vertices. Figure 1 shows an interaction
graph with two circuits consisting of the vertices α2 and α3: the positive circuit
((α2, α3,+), (α3, α2,+)) and the negative circuit ((α2, α3,+), (α3, α2,−)).

To simplify notation, we identify each vertex αi with its index i, and denote
eε

ij := (i, j, ε) for all (i, j, ε) ∈ E. For each αi we denote by Pred(αi) the set
of predecessors of αi, i. e., the set of vertices αj such that there is an edge
(αj , αi, ε) for some ε ∈ {+,−} in E. To identify parallel edges we set E′′ =
{(i, j) | ∃eε

i,j , e
ε′

i,j ∈ E : ε �= ε′} and E′ = E \ E′′.
An interaction graph holds no information about dynamical behavior. Next we

give a formal definition of the term bioregulatory network that includes informa-
tion on structure as well as dynamics. The notation is based on ideas introduced
in [1] and [8].

Definition 2. Let I = (V,E) be an interaction graph comprising n vertices. A
state of the system described by I is a tuple s ∈ Bn. The set of (regular) resource
edges Rj(s) = RI

j (s) of αj in state s = (s1, . . . , sn) is the set

{(αi, αj , ε) ∈ E | (ε = + ∧ si = 1) ∨ (ε = − ∧ si = 0)}.

Given a set
K(I) := {Kj,Rj(s) | j ∈ {1, . . . , n}, s ∈ Bn}

of (logical) parameters, which adopt values in B, we define the Boolean function
f = fK(I) : Bn → Bn, s �→ (K1,R1(s), . . . ,Kn,Rn(s)). The pair N := (I, f) is
called bioregulatory network.

The behavior of a component αj is determined by the influences its predecessors
exert on it. The set of resource edges Rj(s) contains all edges that contribute to
an activation of αj in state s. Note that here the absence of an inhibiting influence
(represented by a negative edge) is interpreted as an activating influence on the
target component. With this interpretation we have that for every s ∈ Bn there
is ε ∈ {+,−} such that eε

ij ∈ Rj(s), if (i, j) ∈ E′′. If (i, j) ∈ E′, then Rj(s) may
or may not contain the corresponding edge eε

i,j , depending on s.
For j ∈ {1, . . . , n}, set MI

j := Mj := {Rj(s) | s ∈ Bn}. Then, by the
above considerations, each M ∈ Mj can be written as M =

⋃
i∈Pred(j) Li with

188 H. Siebert

α1

α2 α3

+

−

−

(0, 1, 0) (1, 1, 0)

(0, 0, 0) (1, 0, 0)

(0, 1, 1) (1, 1, 1)

(0, 0, 1) (1, 0, 1)

K1,∅ = 0
K1,{e+

11} = 1

K2,{e+
12,e+

32} = 0
K2,{e+

12,e−
32} = 1

K2,{e−
12,e+

32} = 1
K2,{e−

12,e−
32} = 0

K3,∅ = 0
K3,{e+

23} = 1

+

+

+

Fig. 1. Interaction graph of a system comprising three components, a list of all pa-
rameters with an assignment of Boolean values, and the corresponding state transition
graph. The heavier gray edges indicate attractors.

Li = {eε
i,j} for some ε ∈ {+,−}, if (i, j) ∈ E′′, and Li = ∅ or Li = {eε

i,j} ⊂ E,
if (i, j) ∈ E′. By definition we have K(I) = {Kj,M | j ∈ {1, . . . , n}, M ∈Mj}.

The choice of parameter values should be consistent with the information in-
herent in the interaction graph. We require that each edge represented in the
interaction graph should have a notable effect on the system’s dynamics. More-
over, the edge’s character given by its sign should be reflected in its dynamical
impact. To formalize this requirement we again have to distingish between edges
in E′ and E′′. For e=(i, j, ε), (i, j) ∈ E′, we have M ∪ {e} ∈Mj for all M ∈Mj ,
and we demand that Kj,M ≤ Kj,M∪{e} for all M ∈Mj. Recall that the addition
of an edge to the set of resources always signifies increasing activating influence,
since the absence of inhibition is interpreted as activating influence. The condi-
tion ensures that increasing activating influence does not result in a decrease of
component activity level. To ensure that e, at least for some state, has a notable
impact on the dynamics, we extend the condition and get:

∀M ∈Mj : Kj,M ≤ Kj,M∪{e} and ∃M ′ ∈Mj : Kj,M ′ < Kj,M ′∪{e} . (1)

In the case (i, j) ∈ E′′, there exists e′ = (i, j, ε′) with ε �= ε′. Since αi influences
αj positively as well as negatively depending on the current state, we cannot
impose a general monotonicity condition on the parameters as in the first part
of (1). However, again we require that there is at least one state where the
addition of e to the set of resources induces an increase in the parameter value.
Otherwise the edge e would be superfluous. Since in every given state either e
or e′ is contained in the set of resources, we compare parameter values for sets
M ∈Mj and (M \ {e′}) ∪ {e}. We obtain the condition

∃M ′ ∈Mj : Kj,M ′ < Kj,(M ′\{e′})∪{e} . (2)

We call edges that satisfy condition (1) resp. (2) functional. This concept of
functionality is an adaptation of the notion of functionality introduced in [10].
In the following, we always assume that all edges in the interaction graph are
functional.

In Fig. 1 an interaction graph and a choice of parameter values are given. For
α1 and α3 the parameters depend on whether or not the single positive edge

Local Structure and Behavior of Boolean Bioregulatory Networks 189

ending in α1 resp. α3 is effective or ineffective. We have R1(s) = ∅ for all states
s with s1 = 0, and R1(s) = {e+11} for all s with s1 = 1. Thus M1 = {∅, {e+11}},
and similarly M3 = {∅, {e+23}}. The choice of Boolean values for the parameters
satisfies condition (1) and ensures the functionality of the edges e+11 and e+23. The
component α2 is influenced by both α1 and α3 via two parallel edges, respectively.
Thus the set of resources is never empty. For example, we have R2((0, 0, 1)) =
{e−12, e+32}. Overall, we get M2 = {{e+12, e+32}, {e+12, e−32}, {e−12, e+32}, {e−12, e−32}}.
Again the choice of parameter values renders all edges functional. A closer look
allows the following interpretation. If α1 has activity level 0, then the influence
of α3 on α2 corresponds to an activating influence: if α3 is inactive, α2 tends to
inactivity represented by the parameter K2,{e−

12,e−
32} = 0, and if α3 is active α2

tends to activity since K2,{e−
12,e+

32} = 1. If α1 has value 1, then the situation is
reversed and α3 inhibits α2. The system is context sensitive.

A different choice of parameter values illustrates the concept of functionality.
If we set K2,{e+

12,e+
32} = K2,{e−

12,e+
32} = 1 and K2,{e+

12,e−
32} = K2,{e−

12,e−
32} = 0,

then verification of conditions (1) and (2) shows that e+12, e
−
12 and e−32 are not

functional. Only the edge e+32 is functional and influences the system’s dynamics.
In [10], the parameters correspond to sets of resource vertices, i. e., the in-

fluence of one component on another cannot change depending on the current
state of the system. The network shown in Fig.1 cannot be represented with
that restriction. However, the notion of resource edges and resource vertices are
equivalent, if there are no parallel edges in the interaction graph.

The parameters determine the behavior of the system as follows. The Boolean
value of the parameter Kj,Rj(s) indicates how the activity level, i. e., the value
of the component αj will evolve from its value in state s. It will increase (resp.
decrease) if the parameter value is greater (resp. smaller) than si. The activity
level stays the same if both values are equal. Thus, the function f maps a state
s to the state the system tends to evolve to. However, if a state and its image
differ in more than one component, we take the following consideration into
account. In a biological system two different processes of change in activity level
represented by the value change of two distinct components will not take the
exact same amount of time. Thus we assume that in the discrete dynamical
representation a state differs from its successor in at most one component. This
procedure is called asynchronous update in Thomas’ framework. By applying
this idea we derive a non-deterministic representation of the dynamics which we
again formalize as a directed graph.

Definition 3. The state transition graph SN describing the dynamics of the
network N is a directed graph with vertex set Bn. For states s = (s1, . . . , sn)
and s′ = (s′1, . . . , s′n), there is an edge s → s′ if and only if s′ = f(s) = s or
s′i = fi(s) for some i ∈ {1, . . . , n} satisfying si �= fi(s) and s′j = sj for all j �= i.

On the right in Fig. 1 we see the state transition graph corresponding to the
given interaction graph and parameters. The dynamics are non-deterministic.
For example, there are two edges leaving the state (0,1,0), representing two
different behaviors of the system.

190 H. Siebert

3 Boolean Functions and Local Interaction Graphs

In the formalism introduced above the dynamical behavior is determined by a
Boolean function that is consistent with the underlying interaction graph. In the
following we show that for every Boolean function g : Bn → Bn there exists an
interaction graph that is consistent with g.

Proposition 1. Let g : Bn → Bn be a Boolean function. Then there exists an
interaction graph I = (V,E) and a set of parameters K(I) such that g = fK(I).

Proof. Let I1 = (V,E1) be the interaction graph with V := {α1, . . . , αn} and
E1 := V × V × {+,−}, i. e., I1 includes every possible edge. We set K1

i,R1
i (s)

:=

gi(s) for all i ∈ {1, . . . , n} and s ∈ Bn, with R1
i (s) := RI1

i .
Now, we have to consider the functionality of the edges in I1. This can be done

componentwise via conditions (1) and (2) given in Sect. 2. We then eliminate
edges that are not functional and derive a new interaction graph and correspond-
ing parameter values in an iterative procedure, starting with I1 and the parame-
ter values given above. In the k-th step, if edge e = (i, j, ε) is functional, we make
no alterations on the interaction graph and parameters. If e is not functional,
we define a new interaction graph Ik+1 = (V,Ek+1) with Ek+1 := Ek \ {e}.
Clearly, we have Mk+1

j = {M \ {e} |M ∈ Mk
j }, since e is eliminated in all sets

of resources. We then set Kk+1
j,M\{e} := Kk

j,M for all M ∈Mk
j , and keep all other

parameters the same as before. By definition the function fK(Ik+1) derived from
the new parameters still coincides with g.

However, we have to make sure that the order of edges we use to check func-
tionality does not influence the result. That is, we want to show that an edge
e is functional in Ik if and only if it is functional in Ik+1, w. r. t. the param-
eters as chosen above. This follows directly from the relation between param-
eter values in the k-th and (k + 1)-th step. For example, let e be a functional
edge in Ik, and assume that its parallel edge e′ is not functional and deleted
in the step resulting in Ik+1. To check whether e is still functional we now
have to consider condition (1) instead of (2). Let us assume the first part of
(1) does not hold. Then there exists M ∈ Mk+1

j such that Kk+1
j,M > Kk+1

j,M∪{e}.
It follows that e /∈ M . Since we deleted the parallel edge e′, we know e′ /∈ M ,
M∪{e},M∪{e′} ∈Mk

j and Kk
j,M∪{e′} = Kk+1

j,M . We set M ′ := M∪{e}. Then we
get Kk

j,(M ′\{e})∪{e′} = Kk+1
j,M > Kk+1

j,M∪{e} = Kk
j,M∪{e} = Kk

j,M ′ . This contradicts
the assumption that (2) does not hold for e′ in Ik. Thus e satisfies the first part
of (1). All other functionality statements can be shown with similar methods.

We repeat the iterative procedure for every edge in I1. After 2n2 steps we
obtain an interaction graph and parameters consistent with g. ��

We persistently emphasize the point that we only deal with functional edges, i. e.
edges that have an impact on the dynamics. However, this influence does not
have to be effective in the whole state space Bn. If we want to understand the
way the structure and dynamics of a system relate to each other, then it is useful

Local Structure and Behavior of Boolean Bioregulatory Networks 191

α1

α2 α3

+

+

+

+

α1

α2 α3

+

−

+

+

α1

α2 α3

+

−

+

+

+

(a) (b) (c)

Fig. 2. Local interaction graphs corresponding to the graph and parameters given in
Fig. 1. I((0, 0, 0)) in (a), I((1, 0, 0)) in (b), I((θ, 0, 0)) in (c).

to have a closer look on the effective interactions depending on the current state
of the system. To capture those local structural aspects we introduce the con-
cept of local interaction graphs. It has already been used in [6] and [5] (see also
references therein). In the following, we denote with si the state that coincides
with s in all components j �= i and takes the value 1−si in the i-th component.

Definition 4. Let I = (V,E) be an interaction graph with parameter set K(I).
Let s = (s1, . . . , sn) ∈ Bn. Then we denote by I(s) the graph with vertex set V
and edge set E(s) ⊆ E. An edge (i, j, ε) is in E(s) if and only if

Kj,Rj(s) �= Kj,Rj(si) ∧ ε = + ⇔ si = Kj,Rj(s) .

We call I(s) the (local) interaction graph in state s.

Clearly, every edge in a local interaction graph I(s) is also contained in I, since
we use the parameters of the interaction graph I to characterize the edges in a
local interaction graph. More precisely, I is the union of all graphs I(s), s ∈ Bn.
We call I also the global interaction graph. Note that there are no parallel edges
in a local interaction graph. Figure 2(a) and (b) show the graphs I((0, 0, 0)) and
I((1, 0, 0)) corresponding to the example given in Fig. 1. The local interaction
graphs give us a finer understanding of the way the network components inter-
act. They can be seen as a visualization of the discrete Jacobian matrix of the
Boolean function fI as introduced in [9].

4 Singular States

In our formalism we only consider whether a component is active or not. We
now incorporate a threshold value that allows us to express uncertainty in the
sense that we do not know if a certain interaction is effective. We already used
this concept in [10] for networks without context sensitivity. Again, we mainly
use notation introduced in [8]. Throughout this section let N := (I, f = fK(I))
be a bioregulatory network comprising n components.

Definition 5. Set Bθ := {0, θ, 1}, where θ is a symbolic representation of the
threshold value and satisfies the order 0 < θ < 1. We allow each regulatory com-
ponent αi to take values in Bθ. The values 0 and 1 are called regular values and

192 H. Siebert

θ is called singular value. The elements of Bn
θ are called states. If all components

of a state are regular, it is called regular state, else it is called singular state.
For every state s = (s1, . . . , sn) we define J(s) := {i ∈ {1, . . . , n} | si = θ}.

We call |a, b| a qualitative value if a, b ∈ B and a ≤ b. The qualitative value |0, 0|
is identified with the regular value 0, |1, 1| with the regular value 1, and |0, 1|
with the singular value θ. The relations <, >, and = are used with respect to
this identification.

Definition 6. We define for all i ∈ {1, . . . , n}

fθ = fK(I),θ : Bn
θ → Bn

θ by fθ
i (s) = |Ki,min(s),Ki,max(s)| ,

where Ki,min(s) := min{Ki,Ri(s′) | s′ ∈ Bn , s′j = sj for all j /∈ J(s)} and
Ki,max(s) := max{Ki,Ri(s′) | s′ ∈ Bn , s′j = sj for all j /∈ J(s)}. We call s ∈ Bn

θ

a steady state if fθ(s) = s.

The definition of Ki,min(s) and Ki,max(s) ensures that the image of a regular state
under fθ is again a regular state. More specific, we have fθ|Bn = f . If a state has
singular components, then Ki,min(s) and Ki,max(s) reflect the dynamical behavior
of the component i in the two extreme cases that either all singular predecessors
of αi have no activating influence on αi or they all contribute to an activation
of αi.

Thomas and Snoussi already link singular states to circuits in the interaction
graph, albeit in a different framework (see [11]). We have adapted their ideas to
a Boolean framework without context sensitivity in [10].

Definition 7. Let C = (αi1 , . . . , αir) be a circuit in I. A state s = (s1, . . . , sn) ∈
Bn

θ is called characteristic state of C if sil
= θ for all l ∈ {1, . . . , r}.

In general, a characteristic state of a circuit is not unique. The state (θ, . . . , θ)
is characteristic for every circuit in I. A simple modification of the reasoning in
[10] leads to the following statement.

Theorem 1. Every singular steady state is characteristic of some circuit in I.

A singular steady state s can be characterized using only regular states and the
function f . The idea is to check componentwise the behavior for regular states
s+ and s− that satisfy Ki,Ri(s+) = Ki,max(s) and Ki,Ri(s−) = Ki,min(s) for some
i ∈ {1, . . . , n}. The proofs for networks that are not context sensitive are given
in [10] and can be easily adapted.

5 Attractors and Local Interaction Graphs of Singular
Steady States

In this section we link structural properties of (local) interaction graphs with the
dynamical behavior of the system by considering singular steady states. Every
possible behavior of the system is captured in the corresponding state transition

Local Structure and Behavior of Boolean Bioregulatory Networks 193

graph introduced in Sect. 2. In the following let N := (I = (V,E), f = fK(I))
be a bioregulatory network comprising n components and SN the corresponding
state transition graph. In addition to standard terminology from graph theory
such as paths and cycles we us the following concepts.

Definition 8. An infinite path (s0, s1, . . .) in SN is called trajectory. A
nonempty set of states D is called trap set if every trajectory starting in D
never leaves D. A trap set A is called attractor if for all s1, s2 ∈ A there is a
path from s1 to s2 in SN . A cycle C := (s1, . . . , sr, s1), r ≥ 2, is called a trap
cycle if every sj, j ∈ {1, . . . , r}, has only one outgoing edge in SN , i. e., the
trajectory starting in s1 is unique.

In other words, the attractors correspond to the terminal strongly connected
components of the graph. Regular steady states as well as trap cycles are at-
tractors. The attractors in the state transition graph given in Fig. 1 are the sets
containing the steady states, i. e., {(0, 0, 0)} and {(0, 1, 1)}, and the set containing
the states of the trap cycle in the graph, i. e., {(1, 0, 0), (1, 1, 0), (1, 1, 1), (1, 0, 0)}.

The behavior of a system becomes, at least to some degree, predictable and
stable inside an attractor. Often, a sensible biological interpretation can be found
for an attractor. In cell differentiation, the different stable states reached at the
end of development may be represented by distinct steady states in the state
transition graph. Attractors of cardinality greater than one imply cyclic behavior,
and thus can often be identified with homeostasis of sustained oscillatory activity,
as can be found in the cell cycle or circadian rhythm.

State transition graphs always contain at least one attractor. The proof of the
following more precise statement can be found in [10].

Proposition 2. For every state s ∈ Bn exists a trajectory in SN which starts
in s and leads to an attractor.

If some vertex αi in I does not have a predecessor, then clearly ai = Ki,∅ for
every state a = (a1, . . . , an) in an attractor. Similarly, we know the values aj for
vertices the only predecessor of which is αi, and so on. Throughout this section
we assume that every vertex in I has a predecessor. Note that an input value in
the sense of a component that maintains its current activity level independent
of the values of the other components is represented as a vertex with its only
incoming edge being a positive selfloop.

In the following we have a closer look at the information concerning the net-
work dynamics in general and the attractors in particular that is inherent in
the existence and properties of singular steady states. We also want to exploit
structural information. As a first step, we adapt the concept of local interaction
graphs to singular states. Recall that J(s) is the set of all singular components
of a state s ∈ Bn

θ .

Definition 9. Let s = (s1, . . . , sn) ∈ Bn
θ . We denote by I(s) the (multi-)graph

with vertex set V and edge set E(s). An edge e is in E(s) if and only if there
exists a regular state s′ = (s′1, . . . , s

′
n) such that s′i = si for all i /∈ J(s) and

e ∈ E(s′), where E(s′) denotes the edge set of the interaction graph I(s′) in s′.
Again, we call I(s) the (local) interaction graph in s.

194 H. Siebert

α1

α2 α3

+

+

+

+

(a) (b)

−

α1

α2 α3

+

+

+
−

−

α2 α3

+

+
α2 α3

+

−

(0, 0) (1, 0)

(1, 1)(0, 1)

(0, 0) (1, 0)

(1, 1)(0, 1)

Fig. 3. Local interaction graph I((0, θ, θ)) on the left, Iθ((0, θ, θ)) and corresponding
state transition graph on the right of (a). Local interaction graph I((1, θ, θ)) on the left,
Iθ((1, θ, θ)) and corresponding state transition graph on the right of (b). Attractors
are indicated by heavier gray edges.

Note that the interaction graph in a singular state may have parallel edges. In
Fig. 2 (c) we see the local interaction graph in state (θ, 0, 0), which is the union
of the graphs I((0, 0, 0)) and I((1, 0, 0)) given in (a) and (b).

A singular steady state s yields stability in the dynamical behavior for the
components that do not belong to J(s). To make a more precise statement
we introduce notation for a specific subgraph of I(s). By Iθ(s) we denote the
(multi-)graph with vertex set V θ(s) := J(s) and edge set Eθ(s) := {(i, j, ε) ∈
E(s) | i, j ∈ J(s)}. That is, we only keep the singular components and inter-
actions between them. We call a graph Z component of Iθ(s), if Z = (VZ , EZ)
is a maximal subgraph of Iθ(s) such that for every k, k′ ∈ VZ exist vertices
k1, . . . , kr ∈ VZ with k1 = k, kr = k′, and (ki, ki+1, ε) ∈ Eθ(s) or (ki+1, ki, ε) ∈
Eθ(s) for some ε ∈ {+,−} and all i ∈ {1, . . . , r − 1}. In Fig. 3 we see for our
running example introduced in Fig. 1 the graphs I((0, θ, θ)) and Iθ((0, θ, θ)) in
(a), as well as the graphs I((1, θ, θ)) and Iθ((1, θ, θ)) in (b). Lastly, let C be a
circuit in I(s) such that all edges of C are in Iθ(s). Then there exists a com-
ponent of Iθ(s) that contains C. We denote this component by JC(s). The next
lemma shows that the stability of the regular components of a singular steady
state is not influenced by value changes in a component Z of Iθ(s). Moreover, if
Iθ(s) has more than one component, the component dynamics are independent
of each other. This property is crucial for the remaining results in this section.
The proof of the lemma is an adaptation of a similar, less general statement in
[10]. Note that in [10] a different definition of Iθ(s) is used that does not take
the effectiveness of interactions in state s into account.

Lemma 1. Let s = (s1, . . . , sn) be a singular steady state, and let Z1, . . . , Zm

be the components of Iθ(s). Consider a union Z of arbitrary components Zj. Let
s̃ = (s̃1, . . . , s̃n) ∈ Bn

θ such that s̃i = si for all i /∈ Z. Then fθ
i (s̃) = fθ

i (s) = si =
s̃i for all i /∈ Z.

Proof. First, let us consider i ∈ J(s) \ Z. Then sj = s̃j for every j ∈ Pred(αi),
since there are no predecessors of αi in Z. Therefore, the sets of resource
edges of αi are not influenced by value changes in Z, i. e., {Ri(s′) | s′ ∈ Bn,

Local Structure and Behavior of Boolean Bioregulatory Networks 195

s′j = sj for all j /∈ J(s)} = {Ri(s′) | s′ ∈ Bn, s′j = s̃j for all j /∈ J(s̃)}. Then
Ki,min(s) = Ki,min(s̃) and Ki,max(s) = Ki,max(s̃), and fθ

i (s̃) = fθ
i (s) = si = s̃i.

Now, let i /∈ J(s). Since sj = θ for all j ∈ Z, we have J(s̃) ⊆ J(s). Therefore,
{s′ ∈ Bn | s′j = s̃j for all j /∈ J(s̃)} ⊆ {s′ ∈ Bn | s′j = sj for all j /∈ J(s)}. It
follows that Ki,min(s) ≤ Ki,min(s̃) ≤ Ki,max(s̃) ≤ Ki,max(s). Since fθ

i (s) = si is
regular, we know Ki,min(s) = Ki,max(s) = si. Thus, Ki,min(s̃) = Ki,max(s̃) = si

and fθ
i (s̃) = si = s̃i. ��

The above lemma shows that we can construct attractors of the state transition
graph SN from attractors of the dynamics restricted to the components of Iθ(s).
To give a clear understanding of this construction we need the following notation.

Let s be a singular steady state and Z a component of Iθ(s) with k := cardVZ .
We may assume that VZ = {αl+1, . . . , αl+k} for some l ∈ {0, . . . , n − 1}. Then
Z is an interaction graph comprising k vertices. Now, we want to define the
dynamics of Z as the projection of the dynamics of I with respect to s. We
define a parameter set K(Z) according to Def. 2 as the set of all parameters
KZ

i,RZ
i (z)

:= Ki,Ri(s̃) for z ∈ Bk and s̃ ∈ Bn with s̃i = si for all i /∈ J(s) and
s̃i = zi−l for all i ∈ Z. The parameters are well defined since there are no
predecessors of vertices in Z in J(s) \ Z. We set fK(Z) = fZ : Bk → Bk, z �→
(KZ

1,RZ
1 (z)

, . . . ,KZ
k,RZ

k (z)
). We then have fZ = πZ ◦ fθ ◦ ρZ , where ρZ : Bk → Bn

with ρZ
i (z) = si for i /∈ Z and ρZ

i (z) = zi−l for i ∈ Z, and πZ : Bn → Bk is the
projection on the components of Z. Note that fZ yields always regular values,
since the singular values in J(s) \ Z do not influence the components in Z. The
definitions of parameters and Iθ(s) ensure that all edges in Z are functional.
According to Prop. 2 the graph SNZ contains an attractor. This fact leads to
the next theorem.

Theorem 2. Let s = (s1, . . . , sn) be a singular steady state, and Z1, . . . , Zm be
the components of Iθ(s). For all j ∈ {1, . . . ,m} let Aj be an attractor of the
state transition graph corresponding to the network NZj as defined above. Then
there exists an attractor A in the state transition graph SN such that ai = si for
all a = (a1, . . . , an) ∈ A, i /∈ J(s), and πZj (A) = Aj for all j ∈ {1, . . . ,m}.

Proof. Without loss of generality we may assume that Z1 contains the vertices
α1, . . . , αcardZ1 , Z2 contains the vertices αcardZ1+1, . . . , αcardZ1+card Z2 , etc. We
set k := 1 +

∑m
i+1 cardZi and A := A1 × · · · ×Am × {(sk, . . . , sn)}.

First, we show that A is a trap set, i. e., every successor of a state in A is again
in A. Let x ∈ A and x′ be a successor of x in SN . Assume x �= x′. Then there
exists i ∈ {1, . . . , n} such that x′i = f i(x) �= xi and x′j = xj for all j �= i. Lemma 1
yields that fj(x) = xj = sj for all j ∈ {k, . . . , n}. Thus, we find l ∈ {1, . . . ,m}
such that i ∈ Zl. Now, we only have to show that πZl(x′) ∈ Al. Per definition we
have fZl(πZl(x)) = πZl ◦fθ◦ρZl(πZl(x)). Lemma 1 allows us to ignore the values
of components in J(s) \Zl and we obtain πZl ◦ fθ ◦ ρZl(πZl(x)) = πZl(fθ(x)) =
πZl(f(x)). Since i ∈ Zl, we then have fZl

i−cardZl−1
(πZl(x)) = fi(x) = x′i �= xi =

πZl

i−card Zl−1
(x), where we set cardZ0 = 0. Per definition there is an edge between

πZl(x) and πZl(x′) in SNZl and, since Al is an attractor, we have πZl(x′) ∈ Al.

196 H. Siebert

Now, we have to show that there is a path from x to x′ in SN for all distinct
x, x′ ∈ A. First, we prove that if there is an edge from state z to state z′, z �= z′,
in SNZl , l ∈ {1, . . . ,m}, then there is an edge from x to x′ in SN for all states
x, x′ ∈ A satisfying πZl(x) = z, πZl(x′) = z′, and xj = x′j for all j /∈ Zl.
According to the definition there is i ∈ Z such that zp �= z′p = fZl

p (z) with
p = i− cardZl−1. With Lemma 1 follows that zp �= fZl

p (z) = πZl
p ◦ fθ ◦ ρZl(z) =

πZl
p (f(x)) = fi(x) for all x ∈ A with xj = zj for all j ∈ Zl. For every such x the

state x′ satisfying x′j = xj for all j �= i and x′i = fi(x) �= zi = xi is also in A,
and there is an edge from x to x′ in SN .

Let x, x′ ∈ A. We set x1
i := xi for all i /∈ Z1 and x1

i := x′i for all i ∈ Z1. For
l ∈ {2, . . . ,m} we set xl

i := xl−1
i for all i /∈ Zl and xl

i := x′i for all i ∈ Zl. Then
there exists a path in SNZ1 from πZ1(x) to πZ1

(x1), since A1 is an attractor. As
seen above, we then can find a path γ1 from x to x1 in SN such that x̃j = xj for
every state x̃ ∈ γ1 and every j /∈ Z1. In the same fashion we find a path γ2 from
x1 to x2 in Sn such that x̃j = x1

j for all x̃ ∈ γ2 and j /∈ Z2. We continue the
procedure for Z3, . . . , Zm. Since xm = x′ per definition, combining the paths γi

in the order of their indices yields a path from x to x′ in SN . ��

We illustrate the theorem by considering our running example in Fig. 1. As
shown in Fig. 3 (a), the graph Iθ((0, θ, θ)) has only one component Z consisting
of a positive circuit containing α2 and α3. We derive the parameters K(Z)
from those given in Fig. 1 for the global interaction graph. Since s1 = 0, we
obtain, according to the above definition, the parametersKZ

2,∅ := K2,{e−
12,e−

32} = 0
and KZ

2,{e+
32}

:= K2,{e−
12,e+

32} = 1. The parameters for α3 stay the same, i. e.,

KZ
3 , ω = K3,ω for ω ∈ {∅, {e+23}}. The resulting state transition graph SZ

N is also
given in Fig. 3 (a) and contains the attractors {(0, 0)} and {(1, 1)}. It follows from
Theorem 2 that the sets {(0, 0, 0)} and {(0, 1, 1)} are attractors in SN . Similarly,
we derive a state transition graph from Iθ((1, θ, θ)) which consists of a negative
circuit. The state transition graph is shown in Fig. 3 (b) and contains only one
attractor, the set {(0, 0), (1, 0), (1, 1), (0, 1)}, which has cardinality greater than
one. Thus, we find an attractor {(1, 0, 0), (1, 1, 0), (1, 1, 1), (1, 0, 1)} in SN . The
state transition graph SN is given in Fig. 1 with the attractors emphasized.

In [4] it is shown that isolated circuits always display a characteristic behavior
depending on their sign. A positive circuit gives rise to two attractors, more pre-
cisely two steady states, a negative circuit results in a cyclic attractor, i. e., an
attractor with cardinality greater than one. The situation is much more difficult
to analyze if there are many circuits in I, possibly even intertwined. Thomas
conjectured in 1981 that the existence of a positive resp. negative circuit in the
interaction graph is a necessary condition for the existence of two attractors
resp. a cyclic attractor in the state transition graph. The conjectures haven been
proven in different settings (see e. g. [12], [5] and [7]). For regulatory networks
without context sensitivity, we formulated in [10] a sufficient condition for cir-
cuits to display their characteristic behavior using singular steady states. The
proof in [10] can be easily adapted to show the next statement.

Local Structure and Behavior of Boolean Bioregulatory Networks 197

Lemma 2. Let I be an interaction graph that contains only one circuit C. If
C is a positive circuit, then f has two fixed points. If C is negative, then there
exists an attractor with cardinality greater than one in the state transition graph.

We make some short remarks on the proof. Recall our assumption that every
vertex in I has a predecessor. Since every edge is functional, the state (θ, . . . , θ)
is steady. In [10], it is shown that I then has a particular structure. It consists of
the circuit C with possibly directed trees coming out of vertices of C. Those trees
may also be interconnected. This structure allows us to explicitly specify values
for the vertices of C that remain fix under fθ in the case of C being positive, or
behave like a trap cycle, if C is negative. From this core behavior we can then
infer the behavior of the whole graph. Here, we also have to consider that there
may be parallel edges outside the circuit C. However, the proof method is still
valid. The necessary technical adaptations to the proofs in [10] correspond to
those made in the proof of Lemma 1.

The above lemma together with Theorem 2 leads to the following theorem.

Theorem 3. Let C be a circuit in I and s a singular steady state characteristic
of C. Assume that C is the only circuit in the component JC(s) of Iθ(s). If C
is a positive circuit, then fθ has at least three fixed points and SN contains at
least two attractors. If C is negative, there is an attractor in SN with cardinality
greater than one.

Proof. We may assume that JC(s) comprises the vertices α1, . . . , αr for some r ∈
{1, . . . , N}. Let at first C be positive. Then fJC(s) has two fixed points x, x′ ∈ Br

according to Lemma 2. We define states s1 and s2 in Bn
θ by s1i := s2i := si for

all i /∈ JC(s), s1i := xi and s2i := x′i for all i ∈ {1, . . . , r}. From Lemma 1 follows
that the states s1 and s2 are steady states. Thus fθ has three fixed points, since
s is distinct from s1 and s2. According to Theorem 2 we find attractors A1 and
A2 in SN such that πJC(s)(A1) = {s1} and πJC(s)(A2) = {s2}.

If C is negative, we find an attractor A′ in the state transition graph of the
component graph JC(s) with cardA′ > 1. Theorem 2 yields an attractor A in
SN with πJC(s)(A) = A′. Thus cardinality of A is also greater than one. ��

Theorem 3 is a stronger result than the one obtained in [10], even for networks
without context sensitivity. The use of local interaction graphs allows for a more
refined picture of the dynamics possible in restricted parts of the state space.

Our running example from Fig. 1 together with Fig. 3 illustrates the theorem.
Figure 4 shows that the statement does not hold, if the circuit C is not the
only circuit in JC(s). The state (θ, 0, θ) is steady for the bioregulatory network
derived from the interaction graph in (a) and the parameters specified in the
caption. There are four circuits in Iθ((θ, 0, θ)), two negative and two positive
circuits. However, the state transition graph contains only one attractor, namely
the set {(0, 0, 1)}, as is shown in (c). Neither the behavior characteristic for
positive circuits nor that characteristic for negative circuits is displayed. Further
examples can be found in [10]. However, a system may display the behavior
characteristic for a circuit of a given sign, although there is no singular steady

198 H. Siebert

α1

α2 α3

+

−

−

(0, 1, 0) (1, 1, 0)

(0, 0, 0) (1, 0, 0)

(0, 1, 1) (1, 1, 1)

(0, 0, 1) (1, 0, 1)+

−

−
−

+

α1

α3

+ −

−
−

+

(a) (c)(b)

Fig. 4. We choose the parameters for the interaction graph in (a) as K
1,{e+

11,e+
31}

=

K
1,{e−11,e−31}

= K
2,{e−12 ,e+

22}
= K

3,{e−13,e−23}
= 1 and set all other parameters 0. In (b) the

graph Iθ(s) for the singular steady state s = (θ, 0, θ). In (c) the corresponding state
transition graph.

s such that the circuit is the only one in the corresponding component of Iθ(s).
The condition is not necessary, as illustrated by an example given in [10], Fig. 4.

6 Conclusion

In [10] we started a systematic investigation of the relation between singular
steady states and attractors in the state transition graph of regulatory networks,
which are described by an interaction graph and Boolean parameters. Among
other results, we found sufficient conditions concerning singular steady states and
circuits in the interaction graph ensuring the existence of two distinct attractors
resp. a cyclic attractor. In this paper, we considerably refine and generalize
the results in [10]. We are now able to deal with systems that display context
sensitivity resulting in interaction graphs with parallel edges. In Sect. 3 we have
shown that in this framework the set of functions arising from interaction graphs
and associated parameter values corresponds to the set of Boolean functions
f : Bn → Bn. To obtain a better understanding of the relation between the
structure and the behavior of the system, we employ local interaction graphs,
which consist of the interactions influencing the behavior of the system in a
given state. Using the local interaction graph of a singular steady state, we
are able to construct attractors of the given regulatory network from attractors
of subsystems of the network. We also obtain a result linking the existence of
circuits in the interaction graph to the existence of multiple attractors resp. an
attractor with cardinality greater than one, which generalizes the corresponding
statement in [10]. Both results demonstrate possibilities to study the network’s
dynamics without the explicit use of the state transition graph.

There are several starting points for future work. Although we have a good
grasp on the behavior arising from circuits in the interaction graph, which are in
some sense isolated, we have no clear understanding of the impact of intertwined
circuits. In [3] the authors propose the concept of functionality context of a cir-
cuit, describing a set of states that ensure the effectiveness of the circuit interac-
tions. Combining this idea with the notion of singular steady states may yield an
approach to analyzing the behavior of networks containing intertwined circuits.

Local Structure and Behavior of Boolean Bioregulatory Networks 199

Besides extending the results for regulatory networks described by Boolean func-
tions, a further goal is to generalize the approach to multi-valued, discrete func-
tions, since they allow a refined modeling of bioregulatory networks.

References

1. Bernot, G., Comet, J.-P., Richard, A., Guespin, J.: Application of formal meth-
ods to biological regulatory networks: extending Thomas’ asynchronous logical
approach with temporal logic. J. Theor. Biol. 229, 339–347 (2004)

2. Chaouiya, C., Remy, É., Mossé, B., Thieffry, D.: Qualitative analysis of regula-
tory graphs: a computational tool based on a discrete formal framework. In: First
Multidisciplinary International Symposium on Positive Systems: Theory and Ap-
plications, POSTA 2003. LNCIS, vol. 294, pp. 119–126. Springer, Heidelberg (2003)

3. Naldi, A., Thieffry, D., Chaouiya, C.: Decision diagrams for the representation and
analysis of logical models of genetic networks. In: Calder, M., Gilmore, S. (eds.)
CMSB 2007. LNCS (LNBI), vol. 4695, pp. 233–247. Springer, Heidelberg (2007)

4. Remy, É., Mossé, B., Chaouiya, C., Thieffry, D.: A description of dynamical graphs
associated to elementary regulatory circuits. Bioinform. 19, 172–178 (2003)

5. Remy, É., Ruet, P.: On differentiation and homeostatic behaviours of Boolean
dynamical systems. In: Priami, C. (ed.) Transactions on Computational Systems
Biology VIII. LNCS (LNBI), vol. 4780, pp. 92–101. Springer, Heidelberg (2007)

6. Remy, É., Ruet, P., Thieffry, D.: Graphic requirements for multistability and at-
tractive cycles in a boolean dynamical framework (prépublication, 2005)

7. Richard, A., Comet, J.-P.: Necessary conditions for multistationarity in discrete
dynamical systems. Rapport de Recherche (2005)

8. Richard, A., Comet, J.-P., Bernot, G.: R. Thomas’ modeling of biological regulatory
networks: introduction of singular states in the qualitative dynamics. Fundamenta
Informaticae 65, 373–392 (2005)

9. Robert, F.: Discrete Iterations: A Metric Study. Springer Series in Computational
Mathematics, vol. 6. Springer, Heidelberg (1986)

10. Siebert, H., Bockmayr, A.: Relating attractors and singular steady states in the
logical analysis of bioregulatory networks. In: Anai, H., Horimoto, K., Kutsia, T.
(eds.) AB 2007. LNCS, vol. 4545, pp. 36–50. Springer, Heidelberg (2007)

11. Snoussi, E.H., Thomas, R.: Logical identification of all steady states: the concept
of feedback loop characteristic states. Bull. Math. Biol. 55, 973–991 (1993)

12. Soulé, C.: Graphical requirements for multistationarity. ComPlexUs 1, 123–133
(2003)

13. Thomas, R., d’Ari, R.: Biological Feedback. CRC Press, Boca Raton (1990)
14. Thomas, R., Kaufman, M.: Multistationarity, the basis of cell differentiation and

memory. II. Logical analysis of regulatory networks in terms of feedback circuits.
Chaos 11, 180–195 (2001)

Investigating Generic Methods to Solve Hopf

Bifurcation Problems in Algebraic Biology

Thomas Sturm1 and Andreas Weber2

1 Universität Passau, 94030 Passau, Germany
sturm@uni-passau.de

2 Institut für Informatik II, Universität Bonn, Römerstr. 164, 53117 Bonn, Germany
weber@cs.uni-bonn.de

Abstract. Symbolic methods for investigating Hopf bifurcation prob-
lems of vector fields arising in the context of algebraic biology have
recently obtained renewed attention. However, the symbolic investiga-
tions have not been fully algorithmic but required a sequence of sym-
bolic computations intervened with ad hoc insights and decisions made
by a human. In this paper we discuss the use of generic methods to re-
duce questions on the existence of Hopf bifurcations in parameterized
polynomial vector fields to quantifier elimination problems over the reals
combined with simplification techniques available in REDLOG. We can
reconstruct most of the results given in the literature within a few sec-
onds of computation time. As no tedious hand computations are involved
we presume that the use of these generic methods will be a useful tool
for investigating other examples.

1 Introduction

Symbolic methods to investigate Hopf bifurcation problems of vector fields aris-
ing in the context of algebraic biology have recently obtained renewed attention
[1,2,3]. A major reason for this attention is the relationship between Hopf bifur-
cation fixed points and the occurrence of oscillations. Although this relationship
is subtle—we refer to [1,3] for nice introductions containing further references—
the topic of investigating “oscillations” in systems for biologically or chemically
relevant values of parameters is of such great interest that considerable work has
been done to investigate various biological and chemical systems with respect to
Hopf bifurcation fixed points, see e.g. [4,5,6,7,8] to mention only some.

There exist software packages such as AUTO1 or XPPAUT2, which locate
Hopf bifurcations by means of numerical calculations. They allow one to evi-
dence the existence of Hopf bifurcations. However, if one wants to prove that
no Hopf bifurcation fixed point exists at all, then numeric methods fail in prin-
ciple. Furthermore, if there are ranges of parameters for which there are Hopf
bifurcations but these ranges are rather small, then numeric methods might not

1 indy.cs.concordai.ca/auto/
2 www.math.pitt.edu/∼bard/xpp/xpp.html

K. Horimoto et al. (Eds.): AB 2008, LNCS 5147, pp. 200–215, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

indy.cs.concordai.ca/auto/
www.math.pitt.edu/~bard/xpp/xpp.html

Investigating Generic Methods to Solve Hopf Bifurcation Problems 201

detect them—a possibility that is not only of theoretical interest in the context
of algebraic biology and chemical reaction systems.

Whereas theoretically the problem is known to be decidable [9,2,3] the sym-
bolic investigations carried out for specific parameterized polynomial vector fields
arising from larger examples, e.g. the ones investigated in [1,2], have not been
fully algorithmic up to now but required a sequence of symbolic computation
intervened with ad hoc insights and decisions made by a human, and sometimes
of sophisticated coordinate transforms. The aim of this paper is to demonstrate
how to proceed fully algorithmically for the examples discussed there.

For this we proceed as follows: We use the method described by El Kahoui and
Weber [9,10] to generate from the symbolic description of the respective ordinary
differential equation a first-order formula in the language of ordered rings, where
our domain is the real numbers. This is always possible if the vector field consists
of polynomials in the variables and parameters.

If one suspects that there is no Hopf bifurcation fixed point or one just wants
to assert that there is one, then one can apply quantifier elimination to the ex-
istential closure, i.e. all parameters are existentially quantified, of our generated
formula. More generally, applying quantifier elimination to the original formula
yields in principle a quantifier-free semi-algebraic description of the parameters
for which Hopf bifurcation fixed points exist. In practice this latter variant does
not finish within reasonable time at present. There is, however, an alternative,
which provides at least one sample solution in the positive case; viz. extended
quantifier elimination [11].

For the quantifier elimination we use REDLOG [12], which provides an auto-
matic combination of virtual substitution methods [13] with partial CAD [14].
After noticing quite soon that most of our generated formulae were intractable
by the regular elimination method, we developed a modified quantifier elim-
ination procedure called positive quantifier elimination. This is based on the
observation that in the considered examples, the variables as well as almost all
of the parameters can be restricted to positive values. It has turned out that
this knowledge greatly supports the elimination process. A current version of
REDLOG including positive quantifier elimination is available for free download
on the REDLOG website3. All computational examples discussed throughout
this paper are contained in the online database REMIS there [15].

We can reconstruct the results of [1] in some seconds of computation time.
Also the main example given in [2] could be handled in principle—without using
the sophisticated coordinate transform used there.

2 Quantifier Elimination over the Reals

2.1 A Survey of Regular Quantifier Elimination

In order to summarize the basic idea of real quantifier elimination, we introduce
first-order logic on top of polynomial equations and inequalities.
3 www.redlog.eu

www.redlog.eu

202 T. Sturm and A. Weber

We consider multivariate polynomials f(u, x) with rational coefficients, where
u = (u1 . . . , um) and x = (x1, . . . , xn). We call u parameters and we call x vari-
ables. Equations will be expressions of the form f = 0, inequalities are of the
form f ≤ 0, f < 0, f ≥ 0, f > 0, or f �= 0. Equations and inequalities are called
atomic formulae. Quantifier-free formulae are Boolean combinations of atomic
formulae by the logical operators “∧,” “∨,” and “¬.” Existential formulae are of
the form ∃x1 . . . ∃xnψ(u, x), where ψ is a quantifier-free formula. Similarly, uni-
versal formulae are of the form ∀x1 . . .∀xnψ(u, x). A general (prenex) first-order
formula has several alternating blocks of existential and universal quantifiers in
front of a quantifier-free formula.

The real quantifier elimination problem can be phrased as follows: Given a
formula ϕ, find a quantifier-free formula ϕ′ such that both ϕ and ϕ′ are equivalent
in the domain of the real numbers. A procedure computing such a ϕ′ from ϕ is
called a real quantifier elimination procedure.

Quantifier elimination for an existential formula ϕ(u) ≡ ∃x1 . . .∃xnψ(u, x)
has a straightforward geometric interpretation: Let

M = { (u, x) ∈ Rm+n | ψ(u, x) },

and let M ′ = { u ∈ Rm | ϕ(u) }. Then M ′ is the projection of M along the coor-
dinate axes of the existentially quantified variables x onto the parameter space.
Quantifier elimination yields a quantifier-free description of this projection.

Sets defined by first-order formulae are called definable sets. Sets defined by
quantifier-free formulae are called semi-algebraic sets. Obviously, every semi-
algebraic set is definable. The existence of a quantifier elimination procedure
implies that, vice versa, every definable set is already semi-algebraic.

Obviously, quantifier elimination for existential formulae provides a test that
determines the solvability of a parametric system of equations in dependence on
the parameters. The procedure gives, however, no information on possible solu-
tions of the input system. This point of view gives rise to the following generaliza-
tion of quantifier elimination: Given an existential formula ϕ ≡ ∃x1 . . . xnψ(u, x),
we wish to compute a set

Φ′ =
{ (
ϕ′

k(u), αk(u)
)
| k ∈ K }, K finite,

which has the following properties:

1. The ϕ′
k are quantifier-free formulae. The αk provide terms t1(u), . . . , tn(u)

corresponding to the eliminated variables x1, . . . , xn.
2. Define ϕ′ as

∨
k∈K ϕ′

k. Then ϕ′ is equivalent to ϕ in the reals. In other words,
ϕ′ is obtained from ϕ by quantifier elimination.

3. Fix real values for the parameters u: if ϕ and hence ϕ′ holds, then there is
some ϕ′

k which holds. The corresponding answer αk is a sample point, which
when virtually substituted for x satisfies ψ.

The notion of virtual substitution refers to the fact that the terms t1(u), . . . , tn(u)
possibly contain some non-standard symbols like quotients, root expressions, or

Investigating Generic Methods to Solve Hopf Bifurcation Problems 203

infinitesimals, which can be substituted into quantifier-free formulae in such a way
that they do not formally occur in the substitution result. An algorithm mapping
ϕ to Φ′ as described above is called an extended quantifier elimination procedure,
or a quantifier elimination with answer.

2.2 Positive Quantifier Elimination

In the context of algebraic biology it is often known that all (or at least most)
variables and parameters are positive. Let us assume first that all variables and
parameters are positive. Such a global information greatly supports the quantifier
elimination process by virtual substitution. We call the resulting procedure pos-
itive quantifier elimination. We do not go into technical details on this here but
indicate a few major points, where positivity can be exploited. To start with, re-
call that the practical applicability of substitution methods depends crucially on
efficient and powerful simplification of intermediate and final results [16]. These
simplification methods can be considerably improved by positivity assumptions
on all variables:

– There is an established simplification strategy which checks for terms that
are (strict) trivial squaresums [16]. These are by definition sums of monomi-
als with positive coefficients and even degree in all variables (and a positive
absolute summand). Obviously, trivial squaresums are positive semi-definite,
and strict trivial squaresums are positive definite. Thus corresponding atomic
formulae can be evaluated to true or false or at least be simplified to equa-
tions or negated equations. On the assumption that all variables are positive,
we need not check for positive degrees. For instance, we generally know that

3x2y4 + 7x2 ≥ 0.

With positive quantifier elimination, we may go further and even equivalently
replace by “true” the atomic formula

3xy + 7x > 0.

Notice that technically we need only literally check for a minus sign in
some canonical recursive or distributive representation of left hand side
polynomials.

– The search for (generalized) trivial squaresums can be extended to testing
irreducible factors of the occurring polynomials. For instance, in the positive
case we can go

ax2 + axy2 − bx2 − by2 ≤ 0←→ (ax− b)(x+ y2) ≤ 0←→ ax− b ≤ 0.

Since our positivity assumptions greatly increase our chance to discover such
squaresums, it pays off in many cases to factorize more systematically. In or-
der to optionally do so we have introduced into REDLOG a switch rlsifaco
(“simplifier factorization with ordering relations”), which is going to play a
role in the discussion of our computation examples later on.

204 T. Sturm and A. Weber

Next, we illustrate two situations, where we can exploit positivity within the
virtual substitution process itself:

– When virtually substituting into atomic formulae quotients with parametric
denominators one must in general multiply with the square of the denomi-
nator in order to preserve signs. As an example consider(

ax− b > 0
)[
x// c

y+z2

]
≡ acy + acz2 − by2 − 2byz2 − bz4 > 0.

With positive quantifier elimination one heuristically discovers non-negative
denominators or at least non-negative factors based on strategies as sketched
for simplification above. In our example, this allows to simply drop the then
positive denominator:(

ax− b > 0
)[
x// c

y+z2

]
≡ ac− by − bz2 > 0.

At this point one possibly avoids subsequent degree violations for quanti-
fied variables in the denominator; in our example, z might be a quantified
variable.

– There is a degree decreasing shift operation which essentially divides all ex-
ponents of quantified variables by the GCD of these exponents [17]. Doing
so, one obviously has to take care of positivity, e.g., when switching be-
tween even and odd degrees. This operation can be simplified and slightly
generalized on our positivity assumption. As a simple example consider the
following transformation, where with positive quantifier elimination we need
not add a condition z ≥ 0:

∃z(az2 − bz4 > 0 ∧ z4 − 3z2 < 0)←→ ∃z(az − bz2 > 0 ∧ z2 − 3z < 0).

For our set of input formulas discussed throughout this paper, it turns out
that all optimizations discussed above become relevant at some point. For input
problems from other fields of applications, positive quantifier elimination has not
been systematically evaluated yet.

Notice that positive quantifier elimination as a concept is not at all re-
stricted to virtual substitution methods. For instance, during the projection
phase of partial CAD one could drop polynomials that are definite on posi-
tivity assumptions.

It is theoretically quite straightforward to equip positive quantifier elimination
with an optional argument to pass a list of parameters and variables that are
not known to be positive. This is, however, not yet implemented at present. We
are now going to discuss how to alternatively deal with a parameter that is not
known to be positive, say λ1.

In applications, it might happen that the parameter occurs in a linear equa-
tion. In this special case, one can eliminate it by solving for λ1 in one of the
linear equations involving this parameter. Algorithmically, this strategy can be
realized in a preprocessing step, e.g. the one realized by Brown and Groß [18],
but is of course restricted to special cases.

Investigating Generic Methods to Solve Hopf Bifurcation Problems 205

One generally applicable procedure is to perform a case distinction on λ1 > 0,
λ1 < 0, or λ1 = 0. This results in three positive quantifier elimination runs,
where in the two latter cases we substitute λ1 ← −λ1 and λ1 ← 0, respectively.
Iterating this procedure for other general parameters λ2, . . . , λn yields 3n many
case distinctions, so that the case distinction is only feasible for small n, i.e.
there are only few parameters not known to be positive.

There is another theoretically interesting option: For quantified non-positive
variables we observe that every real number is a difference of two positive real
numbers and go λ1 ← λ1 − λ′1, where λ′1 is quantified in the same way as λ1.

Note that both our substitution techniques sketched above are completely
algorithmic. They can easily be implemented on top of any implementation of
positive quantifier elimination.

3 Computation Examples

3.1 Models of Genetic Circuits

The examples investigated in [1] consist of a family of ordinary differential equa-
tions of the following form:

d
dt
G(t) = ϑ(γ0 −G(t)−G(t)P (t)n),

d
dt
P (t) = nα(γ0 −G(t)−G(t)P (t)n) + δ(M(t)− P (t)),

d
dt
M(t) = λ1G(t) + γ0µ−M(t), (1)

where n is a natural number. We have renamed λ to λ1 because lambda is
obviously a bad choice for a variable name in Lisp systems. All variables and
parameters except λ1 are known to be positive. For a description of the model,
from which this family of ordinary differential equations arise, we refer to [1].

Using a Maple library4 containing the methods described in [9] we can gen-
erate the first order formulae stating the question on the existence of Hopf bi-
furcation fixed points (taking into account the known positivity conditions) by
the Maple script in Figure 1.

Here we generate formulae up to n = 10 in a slight extension of the cases
considered in [1]. There it is proved that no Hopf bifurcations exist for n ≤ 8
and a Hopf bifurcations fixed point exists for n = 9.

In Figure 2 we present the generated first-order input formulae for n = 2 and
n = 9. The system variables are renamed to vv1, vv2, vv3 by the Maple library;
as they occur in quantified form only, this renaming is of little concern. For
better readability they are typeset as v1, v2, v3. Apart from this, we literally
give the formulae as they are output by Maple. They happen to contain some
redundant parentheses.
4 The current version of the library can be obtained at cg.cs.uni-bonn.de/project-

pages/symbolicanalysis/

206 T. Sturm and A. Weber

eq1n := diff(G(t),t)=(theta*(gamma0-G(t)-G(t)*P(t)^n));

eq2n := diff(P(t),t)=n*alpha*(gamma0-G(t)-G(t)*P(t)^n)+delta*(M(t)-P(t));

eq3n := diff(M(t),t)=lambda1*G(t)+gamma0*mu-M(t);

fcns1 := {G(t),P(t),M(t)};

params1 := [theta,alpha,gamma0,mu,lambda1];

paramcondlist := [theta>0, gamma0>0, mu>0, delta>0, alpha>0];

funccondlist := [G(t)>0, P(t)>0, M(t)>0];

lown:= 0; upn :=10;

for nn from lown to upn do

eq11 := eval(subs(n=nn,eq1n));

eq21 := eval(subs(n=nn,eq2n));

eq31 := eval(subs(n=nn,eq3n));

DEHopfexistence({eq11,eq21,eq31},

fcns1,params1,funccondlist,paramcondlist);

od;

Fig. 1. A Maple script for generating the first-order input formulae ϕ2, . . . , ϕ10 for
Section 3.1

ϕ2 ≡ ∃v1∃v2∃v3(((0 < v1 ∧ 0 < v3) ∧ 0 < v2) ∧
(((((((ϑ(γ0 − v1 − v1v

2
3) = 0 ∧

λ1v1 + γ0µ − v2 = 0) ∧
2α(γ0 − v1 − v1v

2
3) + δ(v2 − v3) = 0) ∧

(0 < ϑδ + ϑv2
3δ + 2λ1ϑv1v3δ ∧

ϑv2
3 + 2ϑδ + 8ϑαv1v3 + 4αv1v3ϑδ + 4αv1v

3
3ϑδ + 8αv1v3δ + δ2 +

ϑδ2 + 16α2v2
1v

2
3 + ϑv2

3δ
2 + 2ϑ2v2

3δ + ϑ2v4
3δ + δ + ϑ2δ + ϑ2 +

2ϑ2v2
3 + ϑ2v4

3 + 4αv1v3 + ϑ + 2ϑv2
3δ + 8ϑv3

3αv1 − 2λ1ϑv1v3δ = 0)) ∧
0 < ϑ) ∧ 0 < γ0) ∧ 0 < µ) ∧ 0 < δ ∧ 0 < α)),

ϕ9 ≡ ∃v2∃v1∃v3(((0 < v1 ∧ 0 < v3) ∧ 0 < v2) ∧
(((((((ϑ(γ0 − v1 − v1v

9
3) = 0 ∧

λ1v1 + γ0µ − v2 = 0) ∧
9α(γ0 − v1 − v1v

9
3) + δ(v2 − v3) = 0) ∧

(0 < ϑδ + ϑv9
3δ + 9λ1ϑv1v

8
3δ ∧

162ϑv17
3 αv1 + 162ϑαv1v

8
3 + 162αv1v

8
3δ + ϑ + 2ϑv9

3δ + ϑ2v18
3 δ +

ϑv9
3 + 2ϑδ + 81αv1v

8
3ϑδ + 81αv1v

17
3 ϑδ + δ2 + ϑδ2 + ϑ2δ + ϑ2 +

2ϑ2v9
3 + ϑ2v18

3 + 6561α2v2
1v

16
3 + 2ϑ2v9

3δ + δ + 81αv1v
8
3 + ϑv9

3δ
2 −

9λ1ϑv1v
8
3δ = 0)) ∧

0 < ϑ) ∧ 0 < γ0) ∧ 0 < µ) ∧ 0 < δ ∧ 0 < α)).

Fig. 2. The input formulae ϕ2 and ϕ9 generated by the Maple script in Figure 1. The
Maple variables vv1, . . . , vv3 generated by the function DEHopfexistence in the script
are typeset as v1, . . . , v3 here.

Investigating Generic Methods to Solve Hopf Bifurcation Problems 207

Table 1. Applying regular quantifier elimination to the existential closures ∃ϕ2,
. . . , ∃ϕ10 of the formulae in Section 3.1. We systematically try several switch settings
in REDLOG.

n rlsifaco rlqeprecise rlqevarseltry result time (s)

2 ◦ ◦ ◦ sigxcpu > 600

3 ◦ ◦ ◦ sigxcpu > 600

4 ◦ ◦ ◦ sigxcpu > 600
4 ◦ ◦ • false 113.26
4 • ◦ • false 84.10

5 ◦ ◦ ◦ sigxcpu > 600

6 ◦ ◦ ◦ sigxcpu > 600
6 • ◦ • false 170.10

7 ◦ ◦ ◦ sigxcpu > 600

8 ◦ ◦ ◦ sigxcpu > 600
8 ◦ ◦ • false 407.63
8 • ◦ • false 346.77

9 ◦ ◦ ◦ sigxcpu > 600

10 ◦ ◦ ◦ sigxcpu > 600
10 • ◦ • true 543.82

As indicated in the introduction, we consider for now exclusively the existen-
tial closures ∃ϕ2, . . . , ∃ϕ10 of our formulae. Then quantifier elimination yields
either “true” or “false” depending on whether or not Hopf bifurcations exist. We
are going to algorithmically treat the positive cases in more detail later on.

Applying Regular Quantifier Elimination. Using the regular quantifier
elimination of REDLOG or QEPCAD with their default settings we could not
decide any of the existential sentences. Systematically trying some REDLOG
switches, we managed to determine special settings that deliver results also for
n = 4, 6, 8, 10. Table 1 summarizes this experiment, where all rows with unsuc-
cessful non-standard switch settings have been deleted. The keyword sigxcpu in
the result column indicates that the computation has been automatically inter-
rupted after exceeding our chosen limit of 10 minutes of CPU time. The switch
rlsifaco (“simplifier factorization with ordering relations”) toggles the factor-
ization of left hand side polynomials of ordering inequalities for the purpose of
simplification; rlqeprecise (“quantifier elimination using precise test points”)
avoids to some extent the substitution of non-standard symbols with virtual
substitution; rlqevarseltry (“quantifier elimintion variable selection try sys-
tematically”) does not only apply the standard heuristics for choosing the next
variable to be eliminated but additionally breaks tries by trying all best choices
and continuing with the smallest result. By default all theses switches are off—for
good reason, since this provides in general the by far best performance. Alto-
gether, we consider these results not at all satisfactory: a regular user of some
software must not be expected to run lengthy experiments with switch settings
in order to hopefully obtain some results.

208 T. Sturm and A. Weber

Table 2. Applying positive quantifier elimination to the existential closures ∃ϕ2,
. . . , ∃ϕ10 of the formulae in Section 3.1. We use the standard switch settings in RED-
LOG; rlsifaco is switched on, which is a general recommendation for positive quan-
tifier elimination.

n ∃ϕn ∃ϕn[λ1 ← −λ1] ∃ϕn[λ1 ← 0] time (s) ∃ϕ[λ1 ← λ1 − λ′
1] time (s)

2 false false false < 0.01 sigxcpu > 600

3 false false false 19.28 sigxcpu > 600

4 false false false 21.58 sigxcpu > 600

5 false false false 19.09 sigxcpu > 600

6 false false false 23.72 sigxcpu > 600

7 false false false 23.89 sigxcpu > 600

8 false false false 22.35 sigxcpu > 600

9 true false false 0.17 true 69.10

10 true false false 0.17 true 69.19

Applying Positive Quantifier Elimination. Our idea is now to improve the
situation by making use of the observation that all variables and parameters
except λ1 are known to be positive. This observation has in fact been used also
in [1] by solving for λ1 in one of the linear equations involving this parameter, so
that all remaining variables and parameters are known to be positive and then
performing a “hand analysis.”

Our approach avoids any hand analysis, because by using the generally ap-
plicable case distinction approach on λ1, cf. Sect. 2.2, we can solve each of the
examples in less than half a minute of computation time, cf. the left part of
Table 2.

Our results for n = 2, . . . , 9 confirm those in [1]; for our additional case n = 10,
we discover the existence of a Hopf bifurcation fixed point. The computation
times are the sums of times for all three respective eliminations. For this example,
however, the cases λ1 < 0 and λ1 = 0 turn out to take no considerable time.

The right hand side part of Table 2 summarizes the alternative approach
introducing instead of a case distinction a new variable λ′1 and substituting λ1 ←
λ1 − λ′1. It performs considerably worse on these examples. This might appear
not surprising from the point of view that the complexity of our elimination
procedure is exponential in the number of quantified variables. On the other
hand, however, iterating case distinctions is exponential as well.

Obtaining Sample Points. For the cases in which a Hopf bifurcation fixed
point exists the extended quantifier elimination [11] in REDLOG computes in
addition a “sample point” fulfilling the existential quantifiers. For the following
experiments, we turn on the switch rlqeaprecise (“quantifier elimination with
answer using precise test points”), which is the analogue for extended quanti-
fier elimination of rlqeprecise discussed above. It reduces the introduction of
infinitesimals to some extent though not completely. In addition, we switch off
rlsiexpla (“simplifier explode always”) so that atomic formulae are not split
by polynomial factorization unless the Boolean structure is preserved.

Investigating Generic Methods to Solve Hopf Bifurcation Problems 209

For the system with n = 9 we obtain within 0.11 s the following sample point:

α = 1

γ0 =
−2 ·
√

1180986− 2187 · ε1 + 2187
2187

δ = 1
λ1 = L(ε1, ε2)
µ = M(ε1, ε2)
ϑ = T (ε1, ε2)

v1 =
−2 ·
√

1180986− 2187 · ε1 + 2187
43048908

v2 = 3
v3 = 3.

Here the ε1, ε2 are positive infinitesimals, which have to be interpreted as follows:
There are 0 < ε1, ε2 ∈ R, which yield valid sample points, and moreover all
positive choices less than ε1 and ε2, respectively, yield valid sample points too.
The symbols L,M , and T denote rather complicated algebraic expressions, which
we present in Appendix A.

In order to get an idea about approximate solutions we set ε1 = ε2 = 0, which
yields:

γ0 = 0.00618948546946, λ1 = 9540696.11947,
ϑ = 0.0000571304095036, v1 = 0.000000314442464411.

For the case n = 10 the same procedure yields within 0.09 s the following
approximate sample point, where again γ0, λ1, ϑ, and v1 are approximated by
fixing two infinitesimals to 0:

α = 1
γ0 = 0.0100554964908
δ = 1
λ1 = 17617230.5528
µ = 0
ϑ = 0.0000211443608455

v1 = 0.000000170287832189
v2 = 3
v3 = 3.

One can now systematically enumerate further solutions by adding to the
input formulae conditions prohibiting for one or several variables or parameters
the solutions already found.

210 T. Sturm and A. Weber

eq11:=diff(x1(t),t)=k21*x1(t)^2*x2(t)+k46-k64*x1(t)-k34*x1(t)+k43*x3(t);

eq12:=diff(x2(t),t)=-k21*x1(t)^2*x2(t)+k56-k65*x2(t);

eq13:=diff(x3(t),t)=k34*x1(t)-k43*x3(t);

fcns1 := {x1(t),x2(t),x3(t)};

params1 := [k21,k46,k64,k34,k43,k56,k65];

paramcondlist1 := [k21>0, k46>0, k64>0, k34>0, k43>0, k56>0, k65>0];

funccondlist1 := [x1(t)>0, x2(t)>0, x3(t)>0];

DEHopfexistence({eq11,eq12,eq13},

fcns1,params1,funccondlist1,paramcondlist1);

Fig. 3. A Maple script for generating the first-order input formula ϕ for Section 3.2

ϕ ≡ ∃v3∃v2∃v1(((0 < v1 ∧ 0 < v2) ∧ 0 < v3) ∧
((((((((((k21v

2
1v2 + k46 − k64v1 − k34v1 + k43v3 = 0 ∧

−k21v
2
1v2 + k56 − k65v2 = 0) ∧

k34v1 − k43v3 = 0) ∧
(0 < k64k65k43 + k64k21v

2
1k43 − 2k21v1v2k65k43 ∧

k21v
2
1k

2
43 + k2

21v
4
1k43 + k2

21v
4
1k34 + 2k34k65k43 + 2k64k34k65 + 2k64k65k43 +

k2
64k21v

2
1 + k2

21v
4
1k64 + k2

34k21v
2
1 + k34k64k43 + k64k

2
43 + k65k

2
43 + k64k

2
65 +

k2
65k43 + k34k

2
65 + k2

64k65 + k2
64k43 + 2k64k21v

2
1k43 + 2k34k21v

2
1k43 +

2k21v
2
1k64k65 + 2k21v

2
1k65k43 + 2k21v

2
1k34k65 + 2k64k34k21v

2
1 −

4k2
21v

3
1v2k43 − 2k2

21v
3
1v2k64 − 2k2

21v
3
1v2k34 + 4k2

21v
2
1v

2
2k43 + 4k2

21v
2
1v

2
2k65 −

2k2
21v

3
1v2k65 − 2k21v1v2k

2
43 − 2k21v1v2k

2
65 + k2

34k65 − 4k21v1v2k65k43 −
4k21v1v2k64k65 − 4k21v1v2k64k43 − 4k21v1v2k34k65 − 2k34k21v1v2k43 = 0)) ∧

0 < k21) ∧ 0 < k46) ∧ 0 < k64) ∧ 0 < k34) ∧ 0 < k43) ∧ 0 < k56) ∧ 0 < k65))

Fig. 4. The formula ϕ generated by the Maple script in Figure 3. The Maple variables
vv1, . . . , vv3 generated by the function DEHopfexistence in the script are typeset as
v1, . . . , v3 here.

3.2 Mass Action Systems

As an example of a mass action system we consider the system investigated in
[2, Example 2.1]. It is described by the following system of differential equations:

d
dt
x1(t) = k21x1(t)2x2(t) + k46 − k64x1(t)− k34x1(t) + k43

d
dt
x2(t) = −k21x1(t)2x2(t) + k56 − k65x2(t)

d
dt
x3(t) = k34x1(t)− k43x3(t). (2)

Again only positive values for the variables are of interest. The automatic
generation of a first-order formula stating the question on the existence of Hopf
bifurcation fixed points and taking into account the positivity conditions is
straightforward. Figure 3 shows our Maple script for this.

Investigating Generic Methods to Solve Hopf Bifurcation Problems 211

Table 3. Applying regular quantifier elimination to the existential closures ∃ϕ of the
formula in Section 3.2. We systematically try several switch settings in REDLOG.

rlsifaco rlqeprecise rlqevarseltry result time (s)

◦ ◦ ◦ sigxcpu > 600
◦ ◦ • true 261.72
◦ • ◦ true 3.03
◦ • • true 1.54
• ◦ ◦ sigxcpu > 600
• ◦ • true 264.73
• • ◦ true 3.35
• • • true 1.79

Table 4. Applying positive quantifier elimination to the existential closures ∃ϕ of the
formula in Section 3.2. We systematically try several switch settings in REDLOG.

rlsifaco rlqeprecise rlqevarseltry result time (s)

◦ ◦ ◦ true 20.79
◦ ◦ • true 32.20
◦ • ◦ sigxcpu > 600
◦ • • sigxcpu > 600
• ◦ ◦ sigxcpu > 600
• ◦ • true 32.54
• • ◦ sigxcpu > 600
• • • true 8.03

The script produces the first-order input formula in Figure 4, which gives the
exact, i.e. both necessary and sufficient condition for the existence of a Hopf
bifurcation fixed point.

The original literature [2], in contrast, does less: it first derives a necessary
condition, and then in a another analysis a sufficient one. To illustrate the dif-
ference, notice that “true” is always necessary and “false” is always sufficient
but neither of them is generally necessary and sufficient.

Our formulation uses the original coordinates and does not use a coordinate
transform as in [2]. Of course, such a coordinate transform could also be realized
with our approach in a preprocessing step.

Tables 3 and 4 show the timings and results for regular and for positive quan-
tifier elimination, respectively, on the existential closure of ϕ. Most surprisingly,
on this example regular quantifier elimination performs considerably better than
its positive variant. We consider this a rare exception. Anyway it will not be com-
pletely ignored: We expect from a careful analysis of the various quantifier elim-
ination runs some insights and ideas for improvements of the procedures. There
is another annoying fact, which cannot be ignored: In the previous section we
had found that switching on rlsifaco (“simplifier factorization with ordering
relations”) and switching off rlqeprecise (“quantifier elimination using precise
test points”) and rlqevarseltry (“quantifier elimination variable selection try

212 T. Sturm and A. Weber

systematically”) should be the default choice for positive quantifier elimination.
The 5th row in Table 4 shows that this very choice fails on this particular exam-
ple. Notice, however, that things look much better when experimentally switch-
ing on rlqevarseltry. This indicates that the unusual behavior is mainly caused
by the fact that good variables orderings cannot be easily recognized.

Anyway, good news is that we can decide the existence of a Hopf bifurcation
fixed point within a few seconds. As the answer is affirmative, also sample answer
points can be computed. For this we use regular extended quantifier elimination
with the most efficient switch settings given in the 4th row of Table 3. We obtain
after 3.05 s:

k21 = 32, k34 = 2/3, k43 = 1, k46 = 1/12, k56 = 1,
k64 = 14/3, k65 = 1/2, v1 = 1/8, v2 = 1, v3 = 1/12.

So for this example, the switch rlqeaprecise is powerful enough to entirely
avoid the introduction of infinitesimals. Again, further sample points can be
enumerated by explicitly excluding in the input formula the ones already found.

4 Conclusions and Future Work

Using generic methods to reduce the Hopf bifurcation problem to a quantifier
elimination problem and then using quantifier elimination methods available in
REDLOG we can reconstruct most of the results given in the literature within
less than a minute of computation time.

We have restricted ourselves to examples already treated in the literature by
other symbolic methods. However, we presume that our generic methods are
applicable not only to many other problems in theory but also in practice. As
no tedious hand computations are involved the use of these generic methods will
hopefully be a useful tool for investigating a wide variety of other examples. In
future work we will test our generic methods for parametrically investigating
Hopf bifurcation fixed points on examples treated in the literature by numer-
ical computations or pure hand calculations, e.g. on the systems described in
[4,5,6,19]. As there is the option to have some parameters fixed and only to
investigate few others symbolically—still extending the possibilities of pure nu-
meric investigations—one can also apply these techniques to larger systems,
which cannot be expected to be amenable for a full parametric analysis, e.g. the
systems described in [7,8].

On the quantifier elimination side, the great challenge is to improve the pro-
cedure such that the original elimination problems, in contrast to the existential
closures, become tractable. There is actually good hope for success: In principle
the elimination for the closure is a harder problem than that for the original
formula, but we apparently benefit from the greater freedom in choosing the
variable order for elimination. The fact that this is successful indicates that the
problems are not inherently hard.

Investigating Generic Methods to Solve Hopf Bifurcation Problems 213

Acknowledgement

We are grateful to A. Dolzmann, C. Groß, A. Reitelmann, and U. Waldmann
for helpful discussions.

References

1. Boulier, F., Lefranc, M., Lemaire, F., Morant, P., Ürgüplü, A.: On proving the
absence of oscillations in models of genetic circuits. In: Anai, H., Horimoto, K.,
Kutsia, T. (eds.) AB 2007. LNCS, vol. 4545, pp. 66–80. Springer, Heidelberg (2007)

2. Gatermann, K., Eiswirth, M., Sensse, A.: Toric ideals and graph theory to analyze
Hopf bifurcations in mass action systems. Journal of Symbolic Computation 40(6),
1361–1382 (2005)

3. Niu, W., Wang, D.: Algebraic approaches to stability analysis of biological systems.
Mathematics in Computer Science 1(3), 507–539 (2008)

4. Sensse, A., Hauser, M.J.B., Eiswirth, M.: Feedback loops for Shilnikov chaos: The
peroxidase-oxidase reaction. The Journal of Chemical Physics 125, 014901, 1–12
(2006)

5. Fussmann, G.F., Ellner, S.P., Shertzer, K.W., Hairston, N.G.J.: Crossing the Hopf
bifurcation in a live predator-prey system. Science 290(5495), 1358–1360 (2000)

6. Mincheva, M., Roussel, M.R.: Graph-theoretic methods for the analysis of chemical
and biochemical networks. I. multistability and oscillations in ordinary differential
equation models. Journal of Mathematical Biology 55(1), 61–86 (2007)

7. Novak, B., Pataki, Z., Ciliberto, A., Tyson, J.J.: Mathematical model of the cell
division cycle of fission yeast. Chaos: An Interdisciplinary Journal of Nonlinear
Science 11(1), 277–286 (2001)

8. Tyson, J.J., Chen, K., Novak, B.: Network Dynamics and Cell Physiology. Nat.
Rev. Mol. Cell Biol. 2(12), 908–916 (2001)

9. El Kahoui, M., Weber, A.: Deciding Hopf bifurcations by quantifier elimination
in a software-component architecture. Journal of Symbolic Computation 30(2),
161–179 (2000)

10. Weber, A.: Quantifier elimination on real closed fields and differential equations.
In: Löwe, B. (ed.) Algebra, Logic, Set Theory – Festschrift für Ulrich Felgner zum
65. Geburtstag. Studies in Logic, vol. 4, pp. 291–315. College Publications (2007)

11. Weispfenning, V.: Simulation and optimization by quantifier elimination. Journal
of Symbolic Computation 24(2), 189–208 (1997); Special issue on applications of
quantifier elimination

12. Dolzmann, A., Sturm, T.: Redlog: Computer algebra meets computer logic. ACM
SIGSAM Bulletin 31(2), 2–9 (1997)

13. Weispfenning, V.: Quantifier elimination for real algebra—the quadratic case and
beyond. Applicable Algebra in Engineering Communication and Computing 8(2),
85–101 (1997)

14. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier
elimination. Journal of Symbolic Computation 12(3), 299–328 (1991)

15. Sturm, T.: Redlog online resources for applied quantifier elimination. Acta
Academiae Aboensis, Ser. B 67(2), 177–191 (2007)

214 T. Sturm and A. Weber

16. Dolzmann, A., Sturm, T.: Simplification of quantifier-free formulae over ordered
fields. Journal of Symbolic Computation 24(2), 209–231 (1997)

17. Dolzmann, A., Sturm, T., Weispfenning, V.: A new approach for automatic theorem
proving in real geometry. Journal of Automated Reasoning 21(3), 357–380 (1998)

18. Brown, C.W., Groß, C.: Efficient preprocessing methods for quantifier elimina-
tion. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2006. LNCS,
vol. 4194, pp. 89–100. Springer, Heidelberg (2006)

19. Sun, M., Tian, L., Yin, J.: Hopf bifurcation analysis of the energy resource chaotic
system. International Journal of Nonlinear Science 1(1), 49–53 (2006)

A Exact Solutions with Infinitesimals for Section 3.1

L(ε1, ε2) =
(
−200156684335646976 ·√ε1 ·

√
4 ·
√

1180986 + 2187 ·ε1 ·
√

3 ·ε2

−22877954716428 ·√ε1 ·
√

4 ·
√

1180986 + 2187 ·ε1 ·
√

3

+5083989936984 ·
√

1180986 + 5559342996092004 ·ε1
+23640506047897342779392 ·ε22 + 5404230477062468352 ·ε2
−5216187623191776

)
/(

1062882 ·√ε1 ·
√

4 ·
√

1180986 + 2187 ·ε1 ·
√

393662

+387420489 ·√ε1 ·
√

4 ·
√

1180986 + 2187 ·ε1 ·
√

3 ·ε1

−387420489 ·√ε1 ·
√

4 ·
√

1180986 + 2187 ·ε1 ·
√

3

−172186884 ·
√

1180986 ·ε1 − 83691328896 ·
√

1180986 ·ε2
+166872690 ·

√
1180986− 94143178827 ·ε21

−91516468147776 ·ε1 ·ε2 + 182475286515 ·ε1
+91516468147776 ·ε2− 181313497440

)

M(ε1, ε2) =
(
61010978765184 ·√ε1 ·

√
4 ·
√

1180986 + 2187 ·ε1 ·
√

393662 ·ε2

+ 22238501759909568 ·√ε1 ·
√

4 ·
√

1180986 + 2187 ·ε1 ·
√

3 ·ε1 ·ε2

−22238501759909568 ·√ε1 ·
√

4 ·
√

1180986 + 2187 ·ε1 ·
√

3 ·ε2
−2402002240184651776 ·

√
1180986·ε22

−2626589449641916717056 ·ε1 ·ε22
+2626589449641916717056 ·ε22

)
/(

4649045868 ·√ε1 ·
√

4 ·
√

1180986 + 2187 ·ε1 ·
√

393662 ·ε1

Investigating Generic Methods to Solve Hopf Bifurcation Problems 215

−4649045868 ·√ε1 ·
√

4 ·
√

1180986 + 2187 ·ε1 ·
√

393662

+847288609443 ·√ε1 ·
√

4 ·
√

1180986 + 2187 ·ε1 ·
√

3 ·ε21

−1694577218886 ·√ε1 ·
√

4 ·
√

1180986 + 2187 ·ε1 ·
√

3 ·ε1

+1684121117211 ·√ε1 ·
√

4 ·
√

1180986 + 2187 ·ε1 ·
√

3

−564859072962 ·
√

1180986 ·ε21
−366065872591104 ·

√
1180986·ε1 ·ε2

+1106473861368 ·
√

1180986·ε1 + 366065872591104 ·
√

1180986 ·ε2
−727577567910 ·

√
1180986− 205891132094649 ·ε31

−200146515839186112 ·ε21 ·ε2 + 604964583702954 ·ε21
+400293031678372224 ·ε1 ·ε2 − 1202306669284833 ·ε1
−397823091334329024 ·ε2 + 790681240245960

)

T (ε1, ε2) =
(
−6561 ·√ε1 ·

√
4 ·
√

1180986 + 2187 ·ε1 ·
√

3

+1458 ·
√

1180986 + 1594323 ·ε1
+1549839424 ·ε2− 1495912

)
/1549839424.

An Improved Algorithm for Detecting a

Singleton Attractor in a Boolean Network
Consisting of AND/OR Nodes

Takeyuki Tamura and Tatsuya Akutsu

Bioinformatics Center, Institute for Chemical Research, Kyoto University,
Gokasho, Uji, Kyoto, Japan, 611-0011

{tamura,takutsu}@kuicr.kyoto-u.ac.jp
http://sunflower.kuicr.kyoto-u.ac.jp/member.html.en

Abstract. Detection of a singleton attractor, which is also called a fixed
point, is known to be NP-hard even for AND/OR BNs (i.e., BNs consist-
ing of AND/OR nodes), where the Boolean network (BN) is a mathe-
matical model of genetic networks and singleton attractors correspond to
steady states. In our recent paper, we developed an O(1.787n) time algo-
rithm for detecting a singleton attractor of a given AND/OR BN where
n is the number of nodes. In this paper, we present an O(1.757n) time
algorithm with which we succeeded in improving the above algorithm.

1 Introduction

Studying biological networks from an algebraic perspective is becoming more
important in various areas such as bioinformatics, computational biology and
systems biology. To analyze them, various kinds of mathematical models of bi-
ological networks have been proposed. Among them, the Boolean network (BN,
in short), which is a model of genetic networks, has received much attention
[2,3,6,12,13]. It is a very simple model: each node (e.g., gene) takes either 0 (in-
active) or 1 (active) and the states of nodes change synchronously according to
regulation rules given as Boolean functions [9,20].

Stable states are called attractors (or fixed points) in a BN. Since stable
states play an important role in biological systems, attractors have also received
much attention. In particular, extensive studies have been done for analyzing the
number and length of attractors [5,13,18]. Most of existing studies on attractors
focus on average case features of random BNs with low indegree (connectivity).
However, not much attention has been paid on analysis of attractors in a specific
BN. In particular, to our knowledge, only several studies have been done on
algorithms for detecting attractors in a given BN.

Detection of a singleton attractor (i.e., an attractor with period 1) is known to
be NP-hard by a polynomial time reduction from SAT (the satisfiability problem
of Boolean formulas in conjunctive normal form) [1]. Milano and Roli indepen-
dently proposed a similar reduction [16]. Zhang et al. developed algorithms with
guaranteed average case time complexity [23]. For example, it is shown that

K. Horimoto et al. (Eds.): AB 2008, LNCS 5147, pp. 216–229, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Improved Algorithm for Detecting a Singleton Attractor 217

in the average case, one of the algorithms identifies all singleton attractors in
O(1.19n) time for a random BN with maximum indegree two. However, these
algorithms may take O(2n) or more time in the worst case even if there exist
only a small number of singleton attractors. Recently, Leone et al. applied SAT
algorithms to identify singleton attractors in a BN [15]. However, they did not
focus on the time complexity issue. Tamura and Akutsu studied the time com-
plexity of that approach and showed that detection of a singleton attractor for
a BN with maximum indegree k can be reduced to (k + 1)-SAT [21].

The attractor detection problem has a close relationship with the SAT prob-
lem, which is a well-known NP-complete problem, as mentioned above. Extensive
studies have been done for developing O(cn) time algorithms with smaller c for
k-SAT, where n is the number of variables and each clause in k-SAT consists of
at most k literals. To our knowledge, the fastest algorithms for 3-SAT and 4-
SAT developed by Iwama and Tamaki run in O(1.324n) time and in O(1.474n)
time, respectively [10]. However, no O((2 − ε)n) (ε > 0) time algorithms are
known for general SAT. On the other hand, Hirsh developed an Õ(1.239m) time
algorithm for SAT with m-clauses [8], which was further improved to Õ(1.234m)
time by Yamamoto [22], where Õ(f(m)) means O(f(m)poly(m,n)). However,
these algorithms cannot be directly applied to our problem although we utilize
the algorithm in [22] as a subroutine.

Recently, we presented an O(1.787n) time algorithm [21] for detecting a sin-
gleton attractor of a given AND/OR BN, in which a Boolean function assigned
to each node is restricted to be a conjunction or disjunction of literals as shown
in Fig.1 (a). This was the first result in which the computation time of the algo-
rithm is O((2− ε)n) (ε > 0) with non-restricted indegree although numbers and
lengths of attractors of AND/OR BNs had been studied in [4,7]. In this paper,
we present an O(1.757n) time algorithm with which we succeeded in improving
the above algorithm. The O(1.787n) time algorithm is based on an observation
that there exist at most 3 possible assignments (among 22 = 4 assignments) for
two adjacent nodes and utilizes Yamamoto’s algorithm as a subroutine, where
details of the algorithm and analysis are involved. In this paper, we extend this
algorithm and obtain an improved O(1.757n) time algorithm. In this improved
algorithm, we make use of an observation that there exist at most 5 possible
assignments (among 23 = 8 assignments) for three adjacent nodes, in addition
to the observation used in the O(1.787n) time algorithm. However, this im-
provement is far from straight-forward. It requires further ideas and much more
involved analyses, to be presented in Sections 3 and 4.

2 Preliminaries

Here we briefly review BN and attractors. A BN N(V, F) consists of a set of
n nodes V and a set of n Boolean functions F , where V = {v1, v2, . . . , vn}
and F = {f1, f2, . . . , fn}. In general, V and F correspond to a set of genes
and a set of gene regulatory rules respectively. Let vi(t) represent the state
of vi at time t. The overall expression level of all the genes in the network

218 T. Tamura and T. Akutsu

v

v

v

1

2

3

111

010011

100

000

001

110

101

(a) (b)

singleton
attractor

Fig. 1. (a) An example of AND/OR BN where v1(t + 1) = v2(t) ∨ v3(t), v2(t + 1) =
v1(t) ∨ v2(t) ∨ v3(t) and v3(t + 1) = v1(t) ∧ v2(t) are satisfied. “∧”, “∨” and “•” mean
“AND”, “OR” and “NOT” respectively. (b) The state transition of [v1, v2, v3].

at time t is given by the vector v(t) = [v1(t), v2(t), . . . , vn(t)]. This vector is
referred as the Gene Activity Profile (GAP) of the network at time t, where
vi(t) = 1 means that the i-th gene is expressed and vi(t) = 0 means that the
i-th gene is not expressed. Since v(t) ranges from [0, 0, . . . , 0] (all entries are 0)
to [1, 1, . . . , 1] (all entries are 1), there are 2n possible states. The regulatory
rules among the genes are given as vi(t+ 1) = fi(v(t)) for i = 1, 2, . . . , n. When
the state of gene vi at time t + 1 depends on the states of ki genes at time t,
the indegree of gene vi is ki and denoted by id(vi). These id(vi) (=ki) genes
are called parents of vi. The number of genes that are directly influenced by
gene vi is called the outdegree of gene vi and denoted by od(vi). Furthermore,
these od(vi) genes are called children of vi. The states of all genes are updated
simultaneously according to the corresponding Boolean functions. A consecutive
sequence of GAPs v(t), v(t+ 1), . . . , v(t+ p) is called an attractor with period p
if v(t) = v(t+p). When p = 1, an attractor is called a singleton attractor. When
p > 1, it is called a cyclic attractor.

For example, a BN where v1(t+1) = v2(t)∨v3(t), v2(t+1) = v1(t)∨v2(t)∨v3(t)
and v3(t+ 1) = v1(t)∧ v2(t) is given in Fig. 1 (a). Note that “•” means “NOT”.
The state transition of [v1, v2, v3] is as shown in Fig. 1 (b). [0, 1, 0] is a singleton
attractor since v(t+ 1) = [0, 1, 0] when v(t) = [0, 1, 0].

In this paper, we treat Boolean functions which can be represented by either
(vi1

a1∧vi2
a2∧· · ·∧viki

aki)b or (vi1
a1∨vi2

a2∨· · ·∨viki

aki)b where vij , aj , b ∈ {0, 1}.
Note that a and b express whether or not negations exist. If every Boolean func-
tion of a BN satisfies the above condition, we call it AND/OR Boolean network.
The number of nodes in AND/OR BN is obtained by counting “AND” and “OR”.
For example, in Fig. 1 (a), the AND/OR BN has 3 nodes. If no confusion arises,
we treat an AND/OR BN as a directed graph as shown in Fig. 1 (a) and denote
N(V,E) where V is a set of nodes and E is a set of directed edges.

If a BN is acyclic and does not have self-loops, there is a polynomial time algo-
rithm for detecting an attractor [1,23]. In such a case, the number of attractors

An Improved Algorithm for Detecting a Singleton Attractor 219

is only one and it is a singleton attractor. On the other hand, if a BN is acyclic
and has self-loops, detection of an attractor is NP-hard [1]. In this paper, we
allow that a BN has self-loops.

In our main algorithm for detecting a singleton attractor, there are steps,
which we call consistency checks, to determine whether or not 0-1 assignments
for nodes contradict 0-1 assignments for their parent nodes. That is, it checks
whether or not a given (partial) 0-1 assignment for nodes is consistent with
the definition of a singleton attractor. For example, in Fig. 1 (a), if v1(t) = 0
and v2(t) = 0 are assigned, the consistency check detects a contradiction since
v1(t+ 1) = 1 �= v1(t). Note that consistency checks just detect change of values
of nodes from time steps t to t + 1 and then they do not contribute directly to
reduce the computational time of our proposed algorithm. The following lemma
shows that consistency checks can be done in ignorable time since our main
algorithm takes an exponential time of n and O(nkan)� O((a + ε)n) holds for
any a > 1 and ε > 0, where k is a small positive integer.

Lemma 1. [21] A consistency check for a GAP or a partial GAP can be done
in O(n2) time.

In this paper, we treat only singleton attractors. Since v(t) = v(t+1) must hold
for a singleton attractor, it suffices to consider only time step t. Thus, we omit
t from here on.

As mentioned in Introduction, detection of a singleton attractor for a BN
with maximum indegree k is reduced to (k+ 1)-SAT [21]. For example of k = 2,
v1(t+ 1) = v2(t) ∧ v3(t) can be represented by 3-SAT as follows:

v1(t+ 1) = v2(t) ∧ v3(t)⇐⇒ v1 = v2 ∧ v3
⇐⇒ (v1 ∨ (v2 ∧ v3)) ∧ (v1 ∨ (v2 ∧ v3))
⇐⇒ (v1 ∨ v2) ∧ (v1 ∧ v3) ∧ (v1 ∨ v2 ∨ v3).

However, the computational time increases as k increases.

3 O(1.774n) Time Algorithm

In this section, we present an O(1.774n) time algorithm which detects a singleton
attractor of a given AND/OR BN. The O(1.757n) time algorithm, which is to
be shown in the next section, can be obtained by improving the analysis of this
O(1.774n) time algorithm. Although the detection of a singleton attractor for a
BN with maximum indegree k can be reduced to (k + 1)-SAT [21], it cannot be
directly applied to our problem since no O((2− ε)n) (ε > 0) time algorithms are
known for SAT with general k.

Let (V,E) denote the structure of a given BN. An edge (u, v) ∈ E from u to v is
called a non-assigned edge if no assignment has been done on any of u and v. The
notation of (u, v) is treated as if it were undirected although it is actually directed
in a given BN. It should be noted there exist at most 3 consistent assignments
(among 4 possible assignments) on (u, v) even if there exist self-loops since either

220 T. Tamura and T. Akutsu

a conjunction of literals or a disjunction of literals is assigned to v [21]. For
example in Fig. 2, (k, l) = (0, 0), (0, 1), (1, 1) are consistent, but (k, l) = (1, 0) is
not consistent. Moreover, two undirected edges (u, v), (v, w) ∈ E are called non-
assigned neighboring edges if no assignment has been done on any of u, v and w.
The notations of (u, v), (v, w) are also treated as if they were undirected although
they are actually directed in a given BN. It should also be noted there exist
at most 5 consistent assignments (among 8 possible assignments) on (u, v, w).
For example in Fig. 2, (e, i, j) = (0, 0, 0),(0, 0, 1), (1, 0, 0), (1, 0, 1), (1, 1, 1) are
consistent, but (e, i, j) = (0, 1, 0),(0, 1, 1),(1, 1, 0) are not consistent.

We show below a pseudo code of the algorithm, which is to be later explained
using an example.

Begin

/*STEP1*/
for s1 = 1 to n do

vs1 is non-assigned;
/*STEP2*/
for s1 = 1 to n do

for s2 = 1 to n do
for s3 = 1 to n do

if s1 �= s2 and s2 �= s3 and s3 �= s1 and (vs1 , vs2) ∈ E and
(vs2 , vs3) ∈ E and vs1 is non-assigned and vs2 is non-assigned
and vs3 is non-assigned
then examine all possible assignments on {(vs1 , vs2), (vs2 , vs3)},
which are at most 5 cases, recursively;
U = the set of nodes whose values were determined at this step;

/*STEP3*/
for s1 = 1 to n do

for s2 = 1 to n do
if s1 �= s2 and (vs1 , vs2) ∈ E and vs1 is non-assigned and vs2 is
non-assigned
then examine all possible 3 assignments on (vs1 , vs2) recursively;
X = the set of nodes whose values were determined at this step;
W = V − U −X , |U | = K and |X | = L;

/*STEP4*/
if K > α(n− L)
then examine all possible assignments on W and then perform consistency
check;
else compute an appropriate assignment on W by using Yamamoto’s algo-
rithm and then perform consistency check;

End

It is to be noted that the subgraph induced byW is a set of isolated nodes (with
self-loops). Therefore, each node v in W is classified into the following types:

An Improved Algorithm for Detecting a Singleton Attractor 221

Type I: The value of v is directly determined from assignment on U +X ,
Type II: The value of v is not directly determined from assignment on U +X ,

where type I nodes consist of the following:

– The value of v is determined from the values of the input nodes to v,
– v is an input of AND node u and 1 is assigned to u,
– v is an input of OR node u and 0 is assigned to u.

Based on this fact, we can use Õ(1.234m) time SAT algorithm for m-clauses
to compute an appropriate assignment on type II nodes of W in the following
way, where Õ(f(m)) means O(f(m)poly(m)). Suppose that vi1 , · · · , vip in W
are type II input nodes to node u ∈ U + X . We assume w.l.o.g. that u is an
AND node to which 0 is already assigned (we can treat analogously the case
where u is an OR node). Furthermore, we can assume w.l.o.g. that u is defined
as u = li1 ∧ li2 ∧ · · · ∧ lip where lij is either vij or vij . Then, the constraint
of li1 ∧ li2 ∧ · · · ∧ lip = 0 can be rewritten as a SAT clause li1 ∨ li2 ∨ · · · ∨ lip .
Therefore, we can use the SAT algorithm to find an assignment on W that leads
to a singleton attractor.

From the above, it is straight-forward to see the correctness of the algorithm.
Thus, we analyze the time complexity.

Lemma 2. Recursive execution of STEP 2 generates O(1.71K) assignments.

Proof. Since at most 5 assignments are examined per three nodes, the number
of possible assignments generated at STEP 2 is bounded by f(K) where f(K)
is defined by f(3) = 5 and f(K) = 5 · f(K − 3). Then, f(K) is O(5K/3), which
is at most O(1.710K) (=O(1.71K)). ��

Lemma 3. Recursive execution of STEP 3 generates O(1.733L) assignments.

Proof. Since 3 assignments are examined per two nodes, the number of possible
assignments generated at STEP 3 is bounded by f(L) where f(L) is defined
by f(2) = 3 and f(L) = 3 · f(L − 2). Then, f(L) is O(3L/2), which is at most
O(1.733L). ��

Lemma 4. If the former part of STEP 4 is executed, the total number of exam-
ined assignments is O(2n−K−L · 1.71K · 1.733L).

Lemma 5. If the latter part of STEP 4 is executed, the total number of examined
assignments is O(1.234K · 1.71K · 1.733L).

Proof. Assume that a SAT clause is constructed when STEP 3 is executed. There
must be a directed edge which is terminated by either u or v and initialized by
a node a ∈ V whose value has not been determined yet. We can assume w.o.l.g.
(a, u) has been a non-assigned edge before values of (u, v) are assigned. Therefore
{(a, u), (u, v)} are non-assigned neighboring edges at the beginning of STEP 3 and
it contradicts the definition of STEP 2. Thus, no SAT-clauses are constructed in
STEP 3. Since the number of constructed SAT clauses in STEP 2 is at most the
number of nodes assigned in STEP 2, the lemma holds. ��

222 T. Tamura and T. Akutsu

b

d e

g i
f

h
j

n

k

l

a

c

m

Fig. 2. Example for explaining our proposed algorithm. {(d, g), (g, h)} and {(e, i), (i, j)}
are selected as non-assigned neighboring edges and (k, l) is selected as a non-assigned
edge.

Theorem 1. Detection of a singleton attractor can be done in O(1.774n) time
for AND/OR BNs.

Proof. Assume that L is obtained. If n is a large enough constant, then 2n−K−L ·
1.71K ·1.733L and 1.234K ·1.71K ·1.733L are monotone decreasing and increasing
function of K respectively. Therefore, the computation time of the proposed
algorithm can be bounded by that of the case in which 1.234K = 2n−K−L holds.
By solving 1.234K = 2n−K−L, we obtain K = 0.767n − 0.767L. Therefore, by
letting α = 0.767, the computation time can be bounded by

max
0≤L≤n

{1.2340.767n−0.767L · 1.710.767n−0.767L · 1.733L} (1)

where 0 ≤ K +L ≤ n must hold. However, 0 ≤ K +L ≤ n always holds for any
L (0 ≤ L ≤ n) since K + L = 0.767n+ 0.233L holds. Since (1.234 · 1.71)0.767 =
1.773 > 1.733, (1) is a monotone decreasing function of L if n is a large enough
constant. Therefore, (1) takes the maximum value when L = 0. Thus, since the
computation time of the proposed algorithm can be bounded by assigning L = 0
to (1), 1.2340.767n · 1.710.767n < 1.774n is obtained as the upper bound. ��

Example 1. In an example shown in Fig. 2, suppose that (d, g, h) = (0, 1, 0) and
(e, i, j) = (1, 0, 1) are assigned at STEP 2 and (k, l) = (0, 0) is assigned at STEP
3. In STEP 2, SAT clauses (a ∨ b ∨ c), (a ∨ c), (b ∨ f), (a ∨ n), (f ∨ n) are
constructed by d, g, e, i, j respectively. Note that d, g, h, e, i, j, k, l are not
included in SAT clauses since they are assigned either 0 or 1 directly. Since m
and n are determined as 0 by h = 0, they are type I nodes. On the other hand,
a, b, c, f are Type II nodes. In STEP 3, no SAT clauses are constructed (See
Lemma 5). If the former part of STEP 4 is executed, all possible assignments
for a, b, c, f , which has 24 cases, are examined. Otherwise the SAT problem is
solved by Yamamoto’s algorithm [22].

An Improved Algorithm for Detecting a Singleton Attractor 223

v

v

v

1

2

3

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

1 2 2 3 2

* * *

* * * *

* * *

The number
of added
SAT clauses

v

v

v

4

5

6

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

2 3 2 2 1

* * *

* **

*

* * *

The number
of added
SAT clauses

v

v

v

7

8

9

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

1 2 2 3 2

*

*

*

* *

*

*

* * *

The number
of added
SAT clauses

(a) (b)

(c)

Fig. 3. Three types of non-assigned neighboring edges. By examining all cases, it is
seen that the numbers of possible assignments and added SAT clauses are at most 5
and 10 (=1+2+2+2+3) respectively for each type. Note that “*” indicates that the
corresponding node adds a SAT clause.

4 Improved Analysis

In this section, we present an improved analysis of the algorithm in Section 3. We
show that the algorithm works in O(1.757n) time. Though this improved analysis
is based on the idea used in the improved analysis of our previous algorithm,
the analysis given here is much more involved and is far from a straight-forward
extension of [19].

For example, in Fig. 3 (a), since v1 and v3 are “∨” and v2 is “∧”, the possible
assignments for [v1, v2, v3] are [0, 0, 0], [0, 0, 1], [1, 0, 0], [1, 0, 1] and [1, 1, 1]. Note
that [0, 1, 0], [0, 1, 1], [1, 1, 0] do not satisfy the condition of a singleton attrac-
tor. Suppose that [v1, v2, v3]=[0, 0, 0] is assigned. Then, values of parents of v1
are determined uniquely. Similarly, values of parents of v3 are also determined
uniquely. However, values of parents of v2 are not determined but a SAT clause
which is a disjunction of values of parent nodes of v2 is constructed. In such a
case, we say that v2 adds a SAT clause.

By applying the above discussion to any non-assigned neighboring edges, the
numbers of added SAT clauses can be bounded for each case. For example, in Fig. 3
(a), numbers of added SAT clauses by [v1, v2, v3] = [0, 0, 0], [0, 0, 1], [1, 0, 0], [1, 0, 1]
[1, 1, 1] are 1, 2, 2, 3 and 2 respectively. Similarly, in Fig. 3 (b), the possible assign-
ments for [v4, v5, v6] are [0, 0, 0], [1, 0, 0], [1, 0, 1], [1, 1, 0] and [1, 1, 1] and numbers
of added SAT clauses by them are 2, 3, 2, 2 and 1 respectively. Furthermore, in Fig.
3 (c), the possible assignments for [v7, v8, v9] are [0, 0, 0], [0, 1, 0], [1, 0, 0], [1, 1, 0]
and [1, 1, 1] and numbers of added SAT clauses by them are 1, 2, 2, 3 and 2 respec-
tively. Although there are assignments which add less numbers of SAT clauses, by
examining all cases it is seen that the worst case is as follows:

224 T. Tamura and T. Akutsu

– One of the five assignments adds one clause.
– Three of the five assignments add two clauses.
– One of the five assignments adds three clause.

From Lemma 2, the number of cases generated in STEP 2 isO(5
K
3) (≤ O(1.71K)).

For each case of them, the number of added SAT clauses is determined according to
which one of five assignments is selected in each non-assigned neighboring edges.
For example, in Fig. 3, if [v1, v2, v3] = [0, 0, 0], [v4, v5, v6] = [0, 0, 0] and [v7, v8, v9]
= [0, 0, 0] are assigned, the total number of added SAT clauses is 4 (=1+2+1).
Similarly, if [v1, v2, v3] = [1, 0, 1], [v4, v5, v6] = [1, 0, 0] and [v7, v8, v9] = [1, 1, 0] are
assigned, the total number of added SAT clauses is 9 (=3+3+3).Then, the number
of cases where one clause is added i times and three clauses are added j times is

K
3∑

i=0

K
3 −i∑
j=0

3(K
3 −i−j) · K

3
Ci · K

3 −iCj

since the number of cases where two clauses are added is 3
K
3 −i−j . Moreover, the

total number of added SAT clauses in this case is 2K
3 − i + j. Therefore, the

computation time in the case where the latter part of STEP 4 is executed is
bounded by

g(K,L) = 1.733L ·
K
3∑

i=0

K
3 −i∑
j=0

1.234(2K
3 −i+j) · 3(K

3 −i−j) · K
3
Ci · K

3 −iCj .

To estimate g(K,L), we show the following lemmas. Let β and γ be constants
where 0 ≤ β ≤ 1

3 and 0 ≤ γ ≤ 1
3 − β hold.

Lemma 6. K
3

CβKis O
�� 1

3
β3β·(1

3−β)1−3β

�K
3
�
and K

3−βKCγKisO
��

(1
3−β)1−3β

γ3γ ·(1
3−β−γ)1−3β−3γ

�K
3
�
.

Proof. From Stirling’s formula, K
3
CβK is O(p(K,β)) where

p(K,β) =
(K

3)
K
3

(βK)βK · (K
3 − βK)

K
3 −βK

=

{
K
3

(βK)3β · (K
3 − βK)1−3β

}K
3

=

{
1
3

β3β · (1
3 − β)1−3β

}K
3

Similarly, K
3 −βKCγK is O(q(K,β, γ)) where

q(K,β, γ) =
(K

3 − βK)
K
3 −βK

(γK)γK · (K
3 − βK − γK)

K
3 −βK−γK

An Improved Algorithm for Detecting a Singleton Attractor 225

=

{
(K

3 − βK)1−3β

(γK)3γ · (K
3 − βK − γK)1−3β−3γ

}K
3

=

{
(1
3 − β)1−3β

γ3γ · (1
3 − β − γ)1−3β−3γ

}K
3

��

To estimate terms including K
3
CβK and K

3 −βKCγK , we divide β and γ into N

and 2N intervals respectively.

Lemma 7. Suppose that i−1
3N ≤ β ≤ i

3N , j−1
6N ≤ γ ≤ j

6N and N is a positive
even integer.

1. If i ≤ N
2 , then K

3
CβK ≤ K

3
C iK

3N
holds. Otherwise K

3
CβK ≤ K

3
C (i−1)K

3N

holds.
2. If j≤N−i+1, then K

3 −βKCγK≤K
3 − (i−1)K

3N

C jK
6N

holds. Otherwise K
3 −βKCγK≤

K
3 − (i−1)K

3N

C (j−1)K
6N

holds.

Proof

1. If K is a constant, then K
3
CβK is convex upward with β and takes the

maximum value when β = 1
6 . By solving i

3N = 1
6 , we obtain i = N

2 (See also
Fig. 4 (a)). Note that K

3 and N
2 are integers from their definitions.

2. From the assumption, K
3 −βKCγK ≤ K

3 − i−1
3N KCγK holds. If K is a constant,

then K
3 − i−1

3N KCγK is convex upward with γ and takes the maximum value
when γ = 1

2 (1
3 −

i−1
3N). Note that i and N are constants. By solving 1

2 (1
3 −

i−1
3N) = j

6N , we obtain j = N − i+ 1 (See also Fig. 4 (b)). ��

Theorem 2. Detection of a singleton attractor can be done in O(1.757n) time
for AND/OR BNs.

Proof

g(K,L) = 1.733L · 1.234
2K
3 · 3 K

3 ·
K
3∑

i=0

(1.234 · 3)−i · K
3
Ci ·

K
3 −i∑
j=0

(1.234
3

)j

· K
3 −iCj

< 1.733L · 1.234
2K
3 · 3 K

3 ·
K
3∑

i=0

0.2702i · K
3
Ci ·

K
3 −i∑
j=0

0.4114j · K
3 −iCj

< 1.733L · (1.2342 · 3)
K
3 ·

(K

3N
· K
6N

)
·{ N

2∑
i=1

f1

(i− 1
3N

)
· f2

(i

3N

)N−i∑
j=1

f3

(j − 1
6N

)
· f4

(i− 1
3N

,
j

6N

)

+

N
2∑

i=1

f1

(i− 1
3N

)
· f2

(i

3N

) 2(N−i)∑
j=N−i+1

f3

(j − 1
6N

)
· f4

(i− 1
3N

,
j − 1
6N

)

226 T. Tamura and T. Akutsu

+
N∑

i= N
2 +1

f1

(i− 1
3N

)
· f2

(i− 1
3N

)N−i∑
j=1

f3

(j − 1
6N

)
· f4

(i− 1
3N

,
j

6N

)

+
N∑

i= N
2 +1

f1

(i− 1
3N

)
· f2

(i− 1
3N

) 2(N−i)∑
j=N−i+1

f3

(j − 1
6N

)
· f4

(i− 1
3N

,
j − 1
6N

)}

= 1.733L · (1.2342 · 3)
K
3 · poly(K) · h(K)

β0 1
6

1
3

β1

i
3N

β2

i
3N

1 2

K
3

β KC < CK
3

i

3N
K
3 β K
C > CK

3
(i

3N

1 -1)
1

2

(a)

γ0
1
2

1
3

γ1

j
6N

γ2

j
6N

1 2

K
3

K C < C

(b)

1
3
-
3N
i-11

3
-
3N
i-1

i

3N

-1- γ K1
K
3

K
i

3N

-1- 6N

j1 K K
3

K
C > Ci

3N

-1- γ K2
K
3

K
i

3N

-1- 6N

(j2 K-1)

1
3N

2
3N N

3N=

1
6N

2
6N

2N
6N=

K K2

-1

-1

Fig. 4. (a) If β ≤ 1
6
, then K

3
CβK ≤ K

3
C iK

3N
holds. Otherwise K

3
CβK ≤ K

3
C (i−1)K

3N

holds.

(b) If j ≤ 1
2
(1
3
− β), then K

3 −βKCγK ≤ K
3 − (i−1)K

3N

C jK
6N

holds. Otherwise K
3 −βKCγK ≤

K
3 − (i−1)K

3N

C (j−1)K
6N

holds.

An Improved Algorithm for Detecting a Singleton Attractor 227

where

f1(i) = (0.27023i)
K
3 , f2(i) =

{
1
3

i3i · (1
3 − i)1−3i

}K
3

,

f3(j) = (0.41143j)
K
3 , f4(i, j) =

{
(1
3 − i)1−3i

j3j · (1
3 − i− j)1−3i−3j

}K
3

hold from Lemma 6. By setting N = 10000, it can be confirmed that h(K) <
O(1.683

K
3). Although this confirmation can be done manually, we used a com-

puter since it requires a vast amount of routine works. Note that larger N yields
a smaller upper bound of h(K). However, O(1.683

K
3) is almost not improved by

N which is larger than 10000. Thus, if the latter part of STEP 4 is executed, the
computation time of the proposed algorithm is O((1.2342 ·3 ·1.683)

K
3 ·1.733L) <

O(1.974K · 1.733L). Similar to the proof of the previous theorem, assume that
L is obtained. If n is a large enough constant, then 2n−K−L · 1.71K · 1.733L

and 1.974K · 1.733L are monotone decreasing and increasing functions of K re-
spectively. Therefore, the computation time of the proposed algorithm can be
bounded by that of the case in which 1.974K = 2n−K−L · 1.71K holds. By
solving this equation, we obtain K = 0.8286n− 0.8286L. Therefore, by letting
α = 0.8286, the computation time can be bounded by

max
0≤L≤n

{1.9740.8286n−0.8286L · 1.733L} (2)

where 0 ≤ K + L ≤ n must hold. However, 0 ≤ K + L ≤ n always holds for
any L (0 ≤ L ≤ n) since K + L = 0.8286n+ 0.1714L holds. Since 1.9740.8286 =
1.757 > 1.733, (2) is a monotone decreasing function of L if n is a large enough
constant. Therefore, (2) takes the maximum value when L = 0. Thus, since the
computation time of the proposed algorithm can be bounded by assigning L = 0
to (2),

O(1.9740.8286n) < O(1.757n)

is obtained as the upper bound. ��

5 Conclusion and Future Works

We improved the computation time of the algorithm for detecting a singleton
attractor in a given AND/OR BN from O(1.787n) [21] to O(1.757n). Readers
may think that further improvement is possible by making use of 4 or more
adjacent nodes (in addition to 2 and 3 adjacent nodes). However, it is unclear
whether such a simple idea leads to an improvement. At least, algorithm and
analysis would be quite involved. Thus, improvement of the proposed algorithm
is left as an open problem. Extension of the proposed algorithm to the enumer-
ation problem (i.e., efficient and output-sensitive enumeration of all singleton
attractors) is also left as an open problem.

228 T. Tamura and T. Akutsu

For the singleton attractor detection problem, every BN can be transformed
into an AND/OR BN although additional nodes are needed as discussed in [21].
If the number of additional nodes is less than 0.229n, the computation time of our
algorithm is still O((2−ε)n) (ε > 0) for general BNs because 1.757n+0.229n < 2n.
This value (0.229n) was also improved from that of [21]. Since canalizing func-
tions and nested canalizing functions are known to be good models for regulatory
rules of eukaryotic genes [14,19], the number of such additional nodes are con-
sidered to be not large for real biological networks when compared to the case
where Boolean functions are assigned to nodes purely at random. It also deserves
to mention that the class of nested canalizing functions is equal to that of unate
cascade functions [11]. An experimental comparison of proposed algorithms is
also one of our future works.

Although this paper focused on the Boolean network as a biological network
model, the proposed techniques might be useful for designing algorithms which
find steady states in other models [17] as already discussed in [21]. Application
and extension of the proposed techniques to other types of biological networks
are important future works.

References

1. Akutsu, T., Kuhara, S., Maruyama, O., Miyano, S.: A system for identifying ge-
netic networks from gene expression patterns produced by gene disruptions and
overexpressions. Genome Informatics 9, 151–160 (1998)

2. Akutsu, T., Miyano, S., Kuhara, S.: Inferring qualitative relations in genetic net-
works and metabolic pathways. Bioinformatics 16, 727–734 (2000)

3. Albert, R., Barabasi, A.-L.: Dynamics of complex systems: Scaling laws for the
period of Boolean networks. Physical Review Letters 84, 5660–5663 (2000)

4. Aracena, J., Demongeot, J., Goles, E.: Fixed points and maximal independent sets
in AND-OR networks. Discrete Applied Mathematics 138, 277–288 (2004)

5. Drossel, B., Mihaljev, T., Greil, F.: Number and length of attractors in a critical
Kauffman model with connectivity one. Physical Review Letters 94, 088701 (2005)

6. Glass, L., Kauffman, S.A.: The logical analysis of continuous, nonlinear biochemical
control networks. Journal of Theoretical Biology 39, 103–129 (1973)

7. Goles, E., Hernandez, G.: Dynamical behavior of Kauffman networks with AND-
OR gates. Journal of Biological Systems 8(2), 151–175 (2000)

8. Hirsch, E.A.: New worst-case upper bounds for SAT. Journal of Automated Rea-
soning 24, 397–420 (2000)

9. Huang, S.: Gene expression profiling, genetic networks, and cellular states: an
integrating concept for tumorigenesis and drug discovery. Journal of Molecular
Medicine 77(6), 469–480 (1999)

10. Iwama, K., Tamaki, S.: Improved upper bounds for 3-SAT. In: Proc. 15th ACM-
SIAM Symposium on Discrete Algorithms, p. 328 (2004)

11. Jarrah, A.S., Raposa, B., Laubenbacher, R.: Nested canalyzing, unate cascade, and
polynomial functions. Physica D 233(2), 167–174 (2007)

12. Kauffman, S.: Metabolic stability and epigenesis in randomly connected genetic
nets. Journal of Theoretical Biology 22, 437–467 (1968)

13. Kauffman, S.: The Origin of Order: Self-organization and selection in evolution.
Oxford Univ. Press, New York (1993)

An Improved Algorithm for Detecting a Singleton Attractor 229

14. Kauffman, S., Peterson, C., Samuelsson, B., Troein, C.: Random Boolean net-
work models and the yeast transcriptional network. Proceedings of the National
Academy of Sciences 100(25), 14796–14799 (2003)

15. Leone, M., Pagnani, A., Parisi, G., Zagordi, O.: Finite size corrections to random
Boolean networks. cond-mat/0611088 (2006)

16. Milano, M., Roli, A.: Solving the satisfiability problem through Boolean networks.
In: Lamma, E., Mello, P. (eds.) AI*IA 1999. LNCS (LNAI), vol. 1792, pp. 72–93.
Springer, Heidelberg (2000)

17. Mochizuki, A.: An analytical study of the number of steady states in gene regula-
tory networks. J. Theoret. Biol. 236, 291–310 (2005)

18. Samuelsson, B., Troein, C.: Superpolynomial growth in the number of attractors
in Kauffman networks. Physical Review Letters 90, 098701 (2003)

19. Shmulevich, I., Kauffman, S.: Activities and sensitivities in Boolean network mod-
els. Physical Review Letters 93(4), 048701 (2004)

20. Somogyi, R., Sniegoski, C.A.: Modeling the complexity of genetic networks: Un-
derstanding multigenic and pleitropic regulation. Complexity 1(6), 45–63 (1996)

21. Tamura, T., Akutsu, T.: Detecting a Singleton Attractor in a Boolean Network
Utilizing SAT Algorithms (submitted); Preliminary version has appeared as fol-
low: Tamura, T., Akutsu, T.: An O(1.787n)-time Algorithm for Detecting a Sin-
gleton Attractor in a Boolean Network Consisting of AND/OR Nodes. In: Proc.
International Symposium on Fundamentals of Computation Theory, pp. 494–505,
(2007)

22. Yamamoto, M.: An improved Õ(1.234m)-time deterministic algorithm for SAT.
In: Proc. International Symposium on Algorithms and Computation, pp. 644–653
(2005)

23. Zhang, S., Hayashida, M., Akutsu, T., Ching, W., Ng, M.K.: Algorithms for finding
small attractors in Boolean networks. EURASIP Journal on Bioinformatics and
Systems Biology 2007, 20180 (2007)

Constructing a Knowledge Base for Gene

Regulatory Dynamics by Formal Concept
Analysis Methods

Johannes Wollbold1,2, Reinhard Guthke2, and Bernhard Ganter1

1 University of Technology, Institute of Algebra, Dresden, Germany
jwollbold@gmx.de

http://www.math.tu-dresden.de/alg/algebra.html
2 Leibniz Institute for Natural Product Research and Infection Biology,

Hans-Knöll-Institute (HKI) Jena, Germany

Abstract. Our aim is to build a set of rules, such that reasoning over
temporal dependencies within gene regulatory networks is possible. The
underlying transitions may be obtained by discretizing observed time se-
ries, or they are generated based on existing knowledge, e.g. by Boolean
networks or their nondeterministic generalization. We use the mathemat-
ical discipline of formal concept analysis (FCA), which has been applied
successfully in domains as knowledge representation, data mining or soft-
ware engineering. By the attribute exploration algorithm, an expert or a
supporting computer program is enabled to decide about the validity of
a minimal set of implications and thus to construct a sound and com-
plete knowledge base. From this all valid implications are derivable that
relate to the selected properties of a set of genes. We present results of
our method for the initiation of sporulation in Bacillus subtilis. However
the formal structures are exhibited in a most general manner. Therefore
the approach may be adapted to signal transduction or metabolic net-
works, as well as to discrete temporal transitions in many biological and
nonbiological areas.

Keywords: Complete lattices, reasoning, temporal logic, gene expression.

1 Introduction

As the mathematical methodology of formal concept analysis (FCA) is little
known within systems biology, we give a short overview of its history and pur-
poses. During the early years 1980, FCA emerged within the community of set
and order theorists, algebraists and discrete mathematicians. Its first aim was to
find a new, concrete and meaningful approach to the understanding of complete
lattices (ordered sets such that for every subset the supremum and the infimum
exist). The following discovery showed to be very fruitful: Every complete lat-
tice is representable as a hierarchy of concepts, which were conceived as sets of
objects sharing a maximal set of attributes. This paved the way for using the
developed field of lattice theory for a transparent and complete representation of

K. Horimoto et al. (Eds.): AB 2008, LNCS 5147, pp. 230–244, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Constructing a Knowledge Base for Gene Regulatory Dynamics 231

very different types of knowledge. FCA was inspired by the pedagogue Hartmut
von Hentig [7] and his program of restructuring sciences, with a view to interdis-
ciplinary collaboration and democratic control. The philosophical background
goes back to Charles S. Peirce (1839 - 1914), who condensed some of his main
ideas to the pragmatic maxim:

Consider what effects, that might conceivably have practical bear-
ings, we conceive the objects of our conception to have. Then, our
conception of these effects is the whole of our conception of the
object. [14, 5.402]

In that tradition, FCA aims at unfolding the observable, elementary proper-
ties defining the objects subsumed by scientific concepts. If applied to temporal
transitions, effects of homogeneous classes of states can be modeled and pre-
dicted in a clear and concise manner. Thus FCA seems to be appropriate to
describe causality - and the limits of its understanding.

At present, FCA is a richly developed mathematical theory, and there are prac-
tical applications in various fields as data and text mining, knowledge manage-
ment, semantic web, software engineering or economics [3]. FCA has been used for
the analysis of gene expression data in [2] and [13], but this is the first approach
of applying it to model (gene) regulatory networks. The mathematical framework
of FCA is very general and open, such that multifarious refinements are possible,
according to current approaches of modeling dynamics within systems biology.
On the other hand, we developed a formal structure for general discrete temporal
transitions. They occur in a variety of domains: control of engineering processes,
development of the values of variables or objects in a computer program, change
of interactions in social networks, a piece of music, etc.

In this paper, however, the examples are uniquely biological. The purpose is to
construct a knowledge base for reasoning about temporal dependencies within
gene regulatory or signal transduction networks, by the attribute exploration
algorithm: For a given set of interesting properties, it builds a sound, complete
and nonredundant knowledge base. This minimal set of rules has to be checked
by an expert or a computer program, e.g. by comparison of knowledge based
predictions with data.

Since there exist relatively fixed thresholds of activation for many genes, it is a
common abstraction to consider only two expression levels off and on. The classi-
cal approach of Boolean networks [8] is able to capture essential dynamic aspects
of regulatory networks. Our present work is based on it, which also makes it possi-
ble to use mathematical and logical derivations for deciding many rules automat-
ically and for a scaling up to larger networks. Nevertheless, the introduction of
more fine-grained expression levels remains possible, e.g. in the sense of qualita-
tive reasoning [11]. Further, this work is influenced by computation tree logic [1],
automata theory and a FCA modeling of temporal transitions in [15]. Temporal
concept analysis as developed by K.E. Wolff [3, pp. 127–148] is more directed to-
ward a structured visualization of experimental time series then toward temporal
logic. We applied it to the analysis of gene expression data in [19].

232 J. Wollbold, R. Guthke, and B. Ganter

In Section 2, the general mathematical framework will be developed. Section 3
gives results for a B. subtilis Boolean network. In Section 4, we will discuss the po-
tential of the method and make some proposals for improving it by solving math-
ematical problems which have emerged from the applications.

2 Methods

2.1 Fundamental Structures of Formal Concept Analysis

One of the classical aims of FCA is the structured, compact but complete visu-
alization of a data set by a conceptual hierarchy. We briefly introduce its basic
definitions; for an easy example see http://www.upriss.org.uk/fca/fca.html

Definition 1. A formal context (G,M, I) defines a relation I ⊆ G ×M be-
tween objects from a set G and attributes from a set M . The set of the attributes
common to all objects in A ⊆ G is denoted by the ′-operator:

A′ := {m ∈M | gIm for all g ∈ A}.

The set of the objects sharing all attributes in B ⊆M is

B′ := {g ∈ G| gIm for all m ∈ B}.

Definition 2. A formal concept of the context (G,M, I) is a pair (A,B) with
A ⊆ G, B ⊆ M, A′ = B and B′ = A. A is the extent, B the intent of the
concept (A,B).

Thus a formal context (G,M, I) is a special, but universally applicable type of
a data table, provided with two operators CM : P(M) → P(M), B ⊆ M �→
B′′ and CG : P(G) → P(G), A ⊂ G �→ A′′. It is easy to see that they are
closure operators, with the properties monotony, extension and idempotency [4,
Definition 14]. It follows that the set of all extents resp. intents of a formal
context is a closure system, i.e. it is closed under intersections [4, Theorem 1].

Formal concepts can be ordered by set inclusion of the extents or - dually, with
the inverse order relation - of the intents. With this order, the set of all concepts
of a given formal context is a complete lattice [4, Theorem 3] (Figure 1).

During the interactive attribute exploration algorithm [4, p. 85ff.], an expert
is asked about the general validity of basic implications A → B between the at-
tributes of a given formal context (G,M, I). An implication has the meaning: “If
an object g ∈ G has all attributes a ∈ A ⊆ M , then it has also all attributes
b ∈ B ⊆M .” If the expert denies, s/he must provide a counterexample, i.e. a new
object of the context. If s/he accepts, the implication is added to the stem base of
the - possibly enlarged - context. A theorem by Duquenne-Guiges [4, Theorem 8]
ensures that every implication semantically valid in the underlying formal con-
text can be derived syntactically from this minimal set by the Armstrong rules
[4, Proposition 21]. In many applications, one is merely interested in the implica-
tional logic of a given formal context, and there is no need for an expert to confirm
the implications.

Constructing a Knowledge Base for Gene Regulatory Dynamics 233

2.2 Constructing the Knowledge Base – Summary of the Method

We start with two sets:

– The universe E. The elements of E represent the entities of the world which
we are interested in.

– The set F (fluents) denotes changing properties of the entities.

A state ϕ ∈ G is an assignment of values in F to the variables e ∈ E, hence it
is defined by a specific choice of attributes m ∈M ⊆ E×F .1 By means of a state
context (Definition 3, Table 3 left part), temporal data can be translated into
the language of FCA. The dynamics is modeled by a binary relation R ⊆ G×G
on the set of states, which gives rise to a transition context K (Definition 4,
Table 1): the objects are transitions (elements of the relation) and the attributes
the values of the entities defining the input and output state of a transition.
This data table may reflect observations repeated at different time points, or
the transitions may be generated by a dynamic model. As to the latter, we are
focusing here on Boolean networks, i.e sets of Boolean functions for each entity
(Definition 5).

It is promising to consider the transitive closure of R. Objects of the tran-
sitive context Kt (Definition 6, Table 2) then are pairs of states such that the
output state emerges from the input state by some transition sequence of arbi-
trary length. Finally we extend the state context Ks by the temporal attributes
always(m), eventually(m) and never(m), which are determined by the given
transitions (Definition 3, Table 3).

The defined mathematical structures may be used in various ways. For in-
stance, one could evaluate - i.e. generalize implications or reject them supposing
outliers or by reason of special conditions - experimental time series by compar-
ison with existing knowledge. Our general procedure is the following:

1. Discretize a set of time series of gene expression measurements and transform
it to an observed transition context Kobs.

2. For a set of interesting genes, translate interactions from biological literature
and databases into a Boolean network.

3. Construct the transition context K by a simulation starting from a set of
states, e.g. the initial states of Kobs or all states (for small networks).

4. Derive the respective transitive contexts Kt and Kobs
t .

5. Perform attribute exploration of Kt. Decide about an implication A → B,
A,B ⊆ M , by checking its validity in Kobs

t and/or by searching for supple-
mentary knowledge. Possibly provide a counterexample from Kobs

t .
6. Answer queries from the modified context Kt and from its stem base.

In step 5., automatic decision criteria could be thresholds of support q = |(A ∪
B)′| and confidence p = |(A∪B)′|

|A′| for an implication in Kobs
t . A weak criterion

1 Thus - as usual - states with the same variable values are identified. It would also be
possible to distinguish them as situations by introducing a new attribute, e.g. “time
interval”.

234 J. Wollbold, R. Guthke, and B. Ganter

is to reject only implications with support 0 (but if no object in Kobs
t has all

attributes from A, the implication is not violated). In [18], a strong criterion has
been applied: implications of Kt had to be valid also in the observed context
(p = 1). This is equivalent to an exploration of the union of the two contexts.

In Section 3 we will analyse pure knowledge based simulations; the validation
by data and experimental literature had been done before in [5]. For that reason,
in step 5. the stem base is computed automatically, without further confirmation
by an expert.

Step 2. could be supported by text mining software. Then attribute explo-
ration provides strong criteria of validation. We implemented the steps 1., 3.
and 4. in R [www.r-project.org]. For step 5., we used the Java tool Concept Ex-
plorer [http://sourceforge.net/projects/conexp]. The output was translated with
R into a PROLOG knowledge base. The R scripts are available on request.

2.3 Definition of the Relevant Formal Contexts

With given sets E and F , we define a state as a map ϕ : E → F . To explore
static features of states, the following formal context2 is defined.

Definition 3. Given two sets E (entities) and F (fluents), a state context is
a formal context (G,M, I) with G ⊆ FE := {ϕ : E → F} and M ⊆ E × F ; its
relation I is given as ϕ I (e, f)⇔ ϕ(e) = f , for all ϕ ∈ G, e ∈ E and f ∈ F .

Definition 4. Given a state context (G,M, I) and a relation R ⊆ G × G, a
transition context K is the context (R,M × {in, out}, Ĩ) with the property

∀i ∈ {in, out} : (ϕin, ϕout)Ĩ(e, f, i)⇔ ϕi(e) = f. (1)

Transitions may be generated by a Boolean network:

Definition 5. Let E be an arbritray set of entities, F := {0, 1} (fluents), and
states G ⊆ FE. Then a transition function FE → FE is called a Boolean
network.

We will identify the elements of F with −,+ or off, on respectively. This defini-
tion is subsumed by the definition of a dynamic network in [12, Definition p. 34],
with a set of variables E and state sets X1 = ... = Xn = F . We use a parallel
update schedule, i.e. the order relation on E is empty. Boolean networks may
be generalized in order to include nondeterminism; then different output states
ϕout are generated from a single input state ϕin (see Section 3, compare [18]).

Definition 6. A transition context K with a transitively closed relation t(R) ⊆
G×G is called a transitive context Kt.

2 It is equivalent to a “many-valued context” with “nominal scale” [4, Section 1.3],
[18, p. 123]. For better readability, we draw the contexts in the latter form (Table 3).
Deriving a one-valued context according to Definition 3 is obvious: each many-valued
attribute e is replaced by {(e, f)| f ∈ F}), e.g. SigA by SigA.off and SigA.on. If an
attribute e takes exactly one of these values, negation of on and off is expressed.
Other kinds of scaling like the interordinal scale could be interesting, if there are
more than two levels (|F | > 2).

Constructing a Knowledge Base for Gene Regulatory Dynamics 235

Table 1. A transition context for the states of Table 3, with all attributes that are
changing during the small simulation, as well as Spo0A and Spo0AP

Transition K
in

A
in

S
p
o
0
A

in

S
p
o
0
A

P
in

A
b
rB

in

S
p
o
0
E

in

S
ig

H
in

H
p
rin

K
in

A
o
u

t

S
p
o
0
A

o
u

t

S
p
o
0
A

P
o
u

t

A
b
rB

o
u

t

S
p
o
0
E

o
u

t

S
ig

H
o
u

t

H
p
ro

u
t

(ϕin
0 , ϕout

1) - + - - - - + - + - + + + -
(ϕin

1 , ϕout
2) - + - + + + - + + - - - - +

(ϕin
2 , ϕout

1) + + - - - - + - + - + + + -

Table 2. The transitive context derived from the transition context of Table 1

Transition K
in

A
in

S
p
o
0
A

in

S
p
o
0
A

P
in

A
b
rB

in

S
p
o
0
E

in

S
ig

H
in

H
p
rin

K
in

A
o
u

t

S
p
o
0
A

o
u

t

S
p
o
0
A

P
o
u

t

A
b
rB

o
u

t

S
p
o
0
E

o
u

t

S
ig

H
o
u

t

H
p
ro

u
t

(ϕin
0 , ϕout

1) - + - - - - + - + - + + + -
(ϕin

0 , ϕout
2) - + - - - - + + + - - - - +

(ϕin
1 , ϕout

1) - + - + + + - - + - + + + -
(ϕin

1 , ϕout
2) - + - + + + - + + - - - - +

(ϕin
2 , ϕout

1) + + - - - - + - + - + + + -
(ϕin

2 , ϕout
2) + + - - - - + + + - - - - +

Definition 7. A state context K = (G,M, I) is extended to a formal context
Ks = (G,M ∪ T, I ∪ IT) by a set of temporal attributes T := {always(m)|m ∈
M} ∪ {never(m)| m ∈ M} ∪ {eventually(m)| m ∈ M}. Let ϕin ∈ G,m =
(e, f), e ∈ E, f ∈ F , and t(R) ⊆ G × G a transitively closed relation. The
relation IT of Ks then is defined as follows:

ϕin IT always(m)⇔∀(ϕin, ϕout) ∈ t(R) : ϕout(e) = f

ϕin IT never(m)⇔∀(ϕin, ϕout) ∈ t(R) : ϕout(e) �= f

ϕin IT eventually(m)⇔∃(ϕin, ϕout) ∈ t(R) : ϕout(e) = f

For B ⊆ T , set always(B) := {{always(b1), ..., always(bi)} | b1, ..., bi ∈ B}, and
analogously never(B) and eventually(B).

The attributes will be abbreviated to alw(m), nev(m) and ev(m). In a nondeter-
ministic setting, alw(m) and nev(m) refer to all possible transition paths starting
from ϕin, ev(m) to the existence of a path.

2.4 Dependency of Contexts and Background Knowledge

In the following we will present first mathematical results that can improve
computability; they are not necessary for the understanding of the application

236 J. Wollbold, R. Guthke, and B. Ganter

Table 3. Left part : A state context corresponding to a simulation starting from a B.
subtilis state without nutritional stress (see Section 3.1, [16, Table 4]). +: on, -: off.
Right part : extension by temporal attributes. Here they are the same for all states,
since these reach the attractor (limit state cycle) {ϕ1, ϕ2} after at most one time step.

State K
in

A
in

S
p
o
0
A

in

S
p
o
0
A

P
in

A
b
rB

in

S
p
o
0
E

in

S
ig

H
in

H
p
rin

e
v
(K

in
A

)

a
lw

(K
in

A
)

n
e
v
(S

p
o
0
A

P
)

e
v
(A

b
rB

)

a
lw

(A
b
rB

)

e
v
(H

p
r)

...

ϕin
0 - + - - - - + x x x x

ϕin
1 - + - + + + - x x x x

ϕin
2 + + - - - - + x x x x

in Section 3. By entering background knowledge (not necessarily implications)
prior to an attribute exploration, the algorithm may be shortened considerably
[3, pp. 101–113]. We searched for first order logic background formula in order to
use the results of an attribute exploration for the exploration of the next context
in the hierarchy. Then the implications of the latter context are derivable from
this background knowledge and a reduced set of new implications. Also during
the exploration of one context, implications can be decided automatically based
on already accepted implications. In this way the expert is enabled to concentrate
on really interesting hypotheses. Thus, the implications of a state context hold
in the input and output part of the corresponding transition context (for an
example see [15, p. 149f.]). Related to transitive and extended state contexts,
the subsequent result holds:

Proposition 1. Let Ks = (G,M ∪ T, I ∪ IT) an extended state context. Sup-
pose the relation t(R) ⊆ G × G is the object set of the transitive context Kt =
(t(R),M × {in, out}, Ĩ). Then the following entailments between implications of
both contexts are valid:

Bin → mout in Kt ≡ B → always(m) in Ks (2)

Bin → mout in Kt |= B → eventually(m) in Ks (3)

Bout → mout in Kt |= always(B) → always(m) in Ks (4)

Bout → mout in Kt |= eventually(B)→ eventually(m) in Ks (5)

Bin ∪mout → ⊥ in Kt |= B → never(m) in Ks (6)

If the latter implication does not follow from the stem base of Kt, this is equivalent
to B → eventually(m) in Ks.

Proof. The proofs are straightforward from the definitions. ��

In order to get a complete overview on valid entailments, as a first step we
performed rule exploration [20] of the following test context, i.e. exploration

Constructing a Knowledge Base for Gene Regulatory Dynamics 237

of Horn rules instead of implications, thus variables are admitted: The objects
are all possible Kt respectively the corresponding Ks, and the attributes are
the following classes of implications with “homogeneous” premises. Then the
explored rules for implications correspond to entailments valid for the semantics
given by the objects, the transitive contexts. The sets are nonempty subsets of
M , m = (e, f), f ∈ F := {0, 1}, and m ∈ B0, C0 (B1, C1) ⇒ ϕ(e) = 0 (1). We
suppose that all states and transitions are completely defined.

1. Bin → Cin

2. Bin → Cout
0 ≡ Bin → nev(C1)

3. Bin → Cout
1 ≡ Bin → alw(C1)

4. Bin → ev(C1)
5. Bout

0 → Cin

6. Bout
1 → Cin

7. ev(B1) → Cin

8. alw(B1) → Cin

9. nev(B1) → Cin

10. Bout
0 → Cout

0

11. Bout
0 → Cout

1

12. Bout
1 → Cout

0

13. Bout
1 → Cout

1

14. ev(B1) → ev(C1)
15. ev(B1) → alw(C1)
16. ev(B1) → nev(C1)
17. alw(B1) → ev(C1)
18. alw(B1) → alw(C1)
19. alw(B1) → nev(C1)
20. nev(B1) → ev(C1)
21. nev(B1) → alw(C1)
22. nev(B1) → nev(C1)

The equivalences in 2. and 3. follow from Proposition 1(2). Since the impli-
cations comprising input attributes are independent from those related only to
output attributes, rule exploration was performed (almost) independently for
the first 9 and the remaining 13 implications. Results for the second part are
shown here.

The exploration started from a hypothetical context as single object of the
test context, where no implications were valid. Before, we had added 25 known
entailments as background rules (BR), like those of Proposition 1 or following
from the definitions, like alw(B1)→ ev(B1). A counterexample represents a sig-
nificant class of contexts. They had to be chosen carefully, since an object not
having its maximal attribute set might preclude a valid entailment.3 The explo-
ration resulted in the following stem base of only 14 entailments. Most of them
are background rules (they are accepted automatically during the exploration),
but not all of these are needed in order to derive all valid entailments between
the chosen implications. This demonstrates the effectivity and minimality of the
algorithm. Entailments 5., 6., 7. and 10. were newly found.

1. nev(B1) → alw(C1) |= nev(B1) → ev(C1) (BR 1)
2. nev(B1) → ev(C1), nev(B1) → nev(C1) |= ⊥ (BR 11)
3. alw(B1) → alw(C1) |= alw(B1) → ev(C1) (BR 2)
4. alw(B1) → ev(C1), alw(B1) → nev(C1) |= ⊥ (BR 14)
5. ev(B1) → nev(C1), nev(B1) → nev(C1) |= Bin → Cout

0 , Bout
0 → Cout

0 , Bout
1

→ Cout
0

6. ev(B1) → nev(C1), alw(B1) → nev(C1) |= Bout
1 → Cout

0

3 Thus the attribute set of a counterexample must be a concept intent in the final test
context.

238 J. Wollbold, R. Guthke, and B. Ganter

7. ev(B1) → nev(C1), alw(B1) → ev(C1) |= ⊥
8. ev(B1) → alw(C1) |= ev(B1) → ev(C1), alw(B1)) → ev(C1), alw(B1)) →

alw(C1) (BR 3)
9. ev(B1) → ev(C1) |= alw(B1) → ev(C1) (BR 4)

10. ev(B1) → ev(C1), nev(B1) → ev(C1) |= Bin → Cout
1 , Bout

0 → Cout
1 , Bout

1 →
Cout

1 , ev(B1) → alw(C1)
11. Bout

1 → Cout
1 |= ev(B1) → ev(C1), alw(B1) → ev(C1), alw(B1) → alw(C1)

(BR 4, BR 5 ⇐ Proposition 1(4)(5))
12. Bout

1 → Cout
0 |= alw(B1) → nev(C1) (BR 9 ⇐ Proposition 1(4))

13. Bout
0 → Cout

1 |= nev(B1)→ ev(C1), nev(B1)→ alw(C1) (BR 1, 10⇐ Propo-
sition 1(4))

14. Bout
0 → Cout

0 |= nev(B1) → nev(C1) (BR 6 ⇐ Proposition 1(4))

It remains to prove the rules of this stem base, which is easy; we are giving
some hints: BR 1, 2, 3, and 4 are based on alw(A) → ev(A), A ⊆M , and BR 11
and 14 on nev(C1), ev(C1)→ ⊥ (⊥ = set of all attributes, and the corresponding
object set is empty).

7.: Since nev(C1) and ev(C1) do not occur together by definition, the combina-
tion of the two implications has support 0 in the test context. In the underlying
contexts, the premise alw(B1) (a subcase of ev(B1)) is no attribute of any state.
The implication alw(B1)→ ⊥ holds, which has not been considered explicitly.

10.: Inversely, in all possible cases the states / transitions have the attribute
ev(C1), and therefore also alw(C1) and Cout

1 . Explicitly:) → ev(C1),) →
alw(C1),) → Cout

1 . 5. is a parallel rule concerning nev(C1).
Rules 7. and 10. suggest that implications with empty premise) or conclu-

sion ⊥ should be considered explicitly. If the counterexamples have maximal
attribute sets, as a conclusion it can be stated that we have derived a set of rules
representing a minimal, sound and complete entailment calculus for the selected
classes of implications for transition and state contexts.

3 Results: Sporulation in Bacillus subtilis

In order to demonstrate the characteristics of the proposed method, we will apply
it to a gene regulatory network assembled in [5] and transformed to a Petri net
as well as a Boolean network in [16].

B. subtilis is a gram positive soil bacterium. Under extreme environmental
stress, it produces a single endospore, which can survive ultraviolet or gamma
radiation, acid, hours of boiling or long periods of starvation. The bacterium
leaves the vegetative growth phase in favour of a dramatically changed and
highly energy consuming behaviour, and it dies at the end of the sporulation
process. This corresponds to a switch between two clearly distinguished genetic
programs, which are complex but comparatively well understood.

By literature and database search, de Jong et al. [5] identified 12 main regula-
tors, constructed a model of piecewise linear differential equations and obtained
realistic simulation results. An exogenous signal (starvation) triggers the phos-
phorylation of the transcription factor Spo0A to Spo0AP by the kinase KinA;

Constructing a Knowledge Base for Gene Regulatory Dynamics 239

this process is reversible by the phosphatase Spo0E. Spo0AP is necessary to
transcribe SigF, which regulates genes initiating sporulation and therefore is an
output of the model. The interplay with other transcription factors AbrB, Hpr,
SigA, SigF, SigH and SinR is graphically represented in [5, Figure 3]; SinI in-
activates SinR by binding to it. SigA and Signal are considered as an input to
the model and are always on. Table 4 lists the Boolean equations building the
model in [16] (communicated by the author). They exhibit a certain degree of
nondeterminism, since the functions for the off fluents sometimes are not the
negation of the on functions. This accounts for incomplete or inconsistent knowl-
edge. In the case of state transitions determined by k conflicting function pairs,
we generated 2k output states.

Table 4. Boolean rules for the nutritional stress response regulatory network, derived
in [16] from [5]. x=̂¬x, x + y=̂x ∨ y, xy=̂x ∧ y.

AbrB = SigA AbrB Spo0AP

AbrB = SigA + AbrB + Spo0AP

SigF = (SigH Spo0AP SinR) + (SigH Spo0AP SinI)

SigF = (SinR SinI) + SigH + Spo0AP

KinA = SigH Spo0AP

KinA = SigH + Spo0AP

Spo0A = (SigH Spo0AP) + (SigA Spo0AP)

Spo0A = (SigA SinR SinI) + (SigH SigA) + Spo0AP

Spo0AP = Signal Spo0A Spo0E KinA

Spo0AP = Signal + Spo0A + Spo0E + KinA

Spo0E = SigA AbrB

Spo0E = SigA + AbrB

SigH = SigA AbrB

SigH = SigA + AbrB

Hpr = SigA AbrB Spo0AP

Hpr = SigA + AbrB + Spo0AP

SinR = (SigA AbrB Hpr SinR SinI Spo0AP) +

(SigA AbrB Hpr SinR SinI Spo0AP)

SinR = SigA + AbrB + Hpr + (SinR SinI) + (SinR SinI) + Spo0AP)
SinI = SinR

SinI = SinR
SigA = TRUE (input to the model)
Signal = TRUE or FALSE (constant, depending on the input state)

3.1 Simulation Starting from a State Typical for the Vegetative
Growth Phase

We performed supplementary analyses of the transitions starting from a typical
state without the starvation signal [16, Table 4]. The concept lattice for the
resulting transitive context (Table 2, with a part of the attribute set only) is
shown in Figure 1. The larger circles at the bottom represent object concepts ;

240 J. Wollbold, R. Guthke, and B. Ganter

Fig. 1. Concept lattice (computed and drawn with Concept Explorer) representing
a simulation without nutritional stress. Signal : starvation; AbrB, Hpr, SigA, SigF,
SigH, SinR, Spo0A (phosporylated form Spo0AP): transcription factors; KinA: ki-
nase; Spo0E : phosphatase; SinI inactivates SinR by binding to it. i-j indicates a
transition (ϕin

i , ϕout
j). Bold / blue lines: Filter (superconcepts) and ideal (subcon-

cepts) of the concept ({(ϕin
0 , ϕout

1), (ϕin
0 , ϕout

2), (ϕin
2 , ϕout

1), (ϕin
2 , ϕout

2)}, {AbrB.in.off,
SigH.in.off, SpoOE.in.off, Hpr.in.on}).

their extents are the four single transitions with the input state at t = 0 or
t = 2, and the intents are all attributes above a concept. Thus for instance, the
two latter transitions have the attribute KinA.in.on in common, designating the
respective concept. Moreover, they are distinguished unambigously from other
sets of transitions by this attribute – the concept is generated by “KinA.in.on”.

Implications of the stem base can be read from the lattice. For instance there
are implications between the generators of a concept:

< 4 > AbrB.in.off → SigH.in.off, SpoOE.in.off, Hpr.in.on (7)

Analogous implications hold for the attributes of the conclusion, and there are
implications between attributes of sub- and superconcepts. < 4 > indicates that
the rule is supported by four transitions.

The bottom concept has an empty extent. Its intent is the set of attributes
never occuring during this small simulation. The top concept does not have an
empty intent – as it is often the case -, but it consists of 10 attributes common
to all 6 transitions. The corresponding rule has an empty body ()):

Constructing a Knowledge Base for Gene Regulatory Dynamics 241

< 6 >) → Signal.in.off, SigA.in.on, SigF.in.off, Spo0A.in.on, Spo0AP.in.off,
SinR.in.off, SinI.in.off, Signal.out.off, SigA.out.on, SigF.out.off,
Spo0A.out.on, Spo0AP.out.off SinR.out.off SinI.out.off

(8)
Related to the simulation in the presence of nutritional stress, the transitive

context has about 20 transitions, 500 concepts and 50 implications. In a such
case it is more convenient to query the implicational knowledge base. But also
for the visualization of large concept hierarchies, there exist more sophisticated
tools like the ToscanaJ suite [http://sourceforge.net/projects/toscanaj/].

3.2 Analysis of All Possible Transitions

In order to analyse the dynamics of the B. subtilis network exhaustively, we
generated 4224 transitions from all possible 212 = 4096 initial states (thus the
rules are nearly deterministic). There were 11.700 transitions in the transitive
context, from which we computed the stem base containing 524 implications
with support > 0, but 11.023.494 ≈ 224 concepts.

It was not feasible to provide biological evidence for a larger part of the im-
plications, within the scope of this methodological study. This could be done by
literature search, especially automatic text mining, by new specialized experi-
ments, or - in a faster, but less reliable way - by comparison with high-throughput
observed time series [18, 3.2]. Instead we will give examples for classes of impli-
cations that can be validated or falsified during attribute exploration in specific
ways. We start with the examples of [16, 4.3].

– “For example, we know that in the absence of nutritional stress, sporulation
should never be initiated [5]. We can use model checking to show this holds
in our model by proving that no reachable state exists with SigF = 1 starting
from any initial state in which Signal = 0, SigF = 0 and Spo0AP = 0.” [16,
341] This is equivalent to the rule following from the stem base:

Signal.in.off, SigF.in.off, Spo0AP.in.off→ SigF.out.off, (9)

– SigF.out.on → KinA.out.off, Spo0A.out.off, Hpr.out.off, AbrB.out.off:
Spo0AP is reported to activate the production of SigF but also repress its
own production (mutual exclusion). [5]

– SigH.out.off → AbrB.out.off, SpoOE.out.off, SinR.out.off, SinI.out.off
All these genes are regulated gene.out = SigA.in + AbrB.in (+ ...).

In our approach, such dependencies and mutual exclusions can be checked
systematically. We searched the stem base for further interesting and simple
implications:

< 4500 > Spo0AP.in.on, KinA.out.off→ Hpr.out.off (10)
< 4212 > SigH.in.on. KinA.out.off→ Hpr.out.off (11)
< 3972 > AbrB.in.off, KinA.out.off→ Hpr.out.off (12)

242 J. Wollbold, R. Guthke, and B. Ganter

Hpr and KinA are determined by different Boolean functions, but they are coreg-
ulated in all states emerging from any input state characterized by the single
attributes Spo0AP.on, SigH.on or AbrB.on.

< 3904 > AbrB.out.on → SigA.in.on, SigA.out.on, SigF.out.off,
Spo0A.out.on, Spo0E.out.on, SigH.out.on,
Hpr.out.off, SinR.out.off, SinI.out.off

(13)

AbrB is an important “marker” for the regulation of many genes, which is un-
derstandable from the Boolean rules with hindsight. By a PubMed query, a
confirmation was found for downregulation of SigF together with upregulation
of AbrB [17].

Finally we entered sets of interesting attributes as facts into the PROLOG
knowledge base, such that a derived implication was computed.4 Complemen-
tary to (9), we searched after conditions for the switch towards sporulation
(SigF.out.on) and found the implication

SigF.in.off, Spo0AP.in.off, SigF.out.on
→ Signal.in.on. Signal.out.on, SigA.in.on, SigA.out.on, Spo0AP.out.off,

Spo0A.out.off, AbrB.out.off, KinA.out.off, Hpr.out.off.
(14)

The latter four attributes follow immediately from the Boolean rules, but
Spo0AP.out.off depends in a more complex manner on the premises. It is also
noteworthy that the class of input states developing to a state with attribute
SigF.out.on is only characterized by the common attributes Signal.in.on and
SigA.in.on, i.e. the initial presence or absence of no other gene is necessary for
the initiation of sporulation.5

4 Discussion

The present work translates observations and simulations of discrete temporal
transitions into the language of formal concept analysis. The application to a
well studied gene regulatory network showed how a model can be validated in
a systematic way, by drawing clear and complete consequences from the theory
(the knowledge based network), and we found interesting new transition rules.
The approach could be expanded by accounting for the change of the network
structure itself in strongly different biological situations, e.g. with or without
stress. Thus in ongoing work we adapt a literature based network to observed
transcriptome time series, resulting in two sets of Boolean functions related to
the stimulation of human fibroblast cells by the cytokines Tnfα or Tgfβ.

Until now we have established the foundation in order to exploit manyfold
mathematical results of FCA for the analysis of gene expression dynamics and
4 And accordingly the closure of the attribute set.
5 For this complete simulation, the conditions Signal = SigA = TRUE had been

dropped, but they were supposed to be constant.

Constructing a Knowledge Base for Gene Regulatory Dynamics 243

of discrete temporal transitions in general. An important question is: How can
attribute exploration be split into partial problems, in this special case? For
instance, one could focus on a specific set of genes first, which is understand-
able as a scaling [4, Definition 28]. Then the decomposition theory of concept
lattices will be useful, which permits an elegant description by means of the
corresponding formal contexts [4, Chapter 4].

The price of the logical completeness is its computational complexity. In this
regard the status of attribute exploration has not yet fully been clarified. Com-
putation time strongly depends on the logical structure of the context, and
there exist cases where the size of the stem base is exponential in the size of
the input [10]. However, deriving an implication from the stem base is possi-
ble in linear time, related to the size of the base, and the PROLOG queries in
Section 3.2 were very fast. As demonstrated in Section 2.4, attribute exploration
can be shortened by background knowledge. Further it will be crucial to decide
implications without the necessity to generate all possible transitions. For that
purpose, model checking [6] could be a promising approach, or the structural and
functional analysis of Boolean networks by an adaptation of metabolic network
methods in [9]. There, determining activators or inhibitors corresponds to the
kind of rules found by our method, and logical steady state analysis indicates
which species can be produced from the input set and which not. An exciting
direction of research would be to conclude dynamical properties of Boolean net-
works from their structure and the transition functions, e.g. by regarding them as
polynomial dynamical systems over finite fields [12, Section 4] and by exploiting
theoretical work in the context of cellular automata [12, Section 6].

The present work is a first step to use the potential of formal concept analysis
for solving questions within systems biology. As indicated, many directions of
research are possible. We encourage their investigation and are open to any
collaboration with mathematicians, computer scientists or (systems) biologists.

Acknowledgement. The work was supported by the German Federal Ministry
of Education and Research BMBF (FKZ 0313652A).

References

1. Chabrier-Rivier, N., et al.: Modeling and Querying Biomolecular Interaction Net-
works. Theor. Comp. Sc. 325(1), 25–44 (2004)

2. Choi, V., et al.: Using Formal Concept Analysis for Microarray Data Comparison.
Advances in Bioinformatics and Computational Biology 5, 57–66 (2006)

3. Ganter, B., Stumme, G., Wille, R. (eds.): Formal Concept Analysis. LNCS (LNAI),
vol. 3626. Springer, Heidelberg (2005)

4. Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations.
Springer, Heidelberg (1999)

5. de Jong, H., et al.: Qualitative Simulation of the Initiation of Sporulation in Bacil-
lus subtilis. Bulletin of Mathematical Biology 66, 261–299 (2004)

6. Esparza, J.: Model checking using net unfoldings. Sci. Comput. Programm 23,
151–195 (1994)

244 J. Wollbold, R. Guthke, and B. Ganter

7. von Hentig, H.: Magier oder Magister? Über die Einheit der Wissenschaft im
Verständigungsprozess. Suhrkamp, Frankfurt (1974)

8. Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolu-
tion. Oxford University Press, New York (1993)

9. Klamt, S., et al.: A methodology for the structural and functional analysis of
signaling and regulatory networks. BMC Bioinformatics 7(56) (2006)

10. Kuznetsov, S.O., Obiedkov, S.A.: Counting Pseudo-intents and #P-completeness.
In: Missaoui, R., Schmidt, J. (eds.) ICFCA 2006. LNCS (LNAI), vol. 3874, pp.
306–308. Springer, Heidelberg (2006)

11. King, R.D., Garrett, S.W., Coghill, G.M.: On the Use of Qualitative Reasoning to
Simulate and Identify Metabolic Pathways. Bioinformatics 21(9), 2017–2026 (2005)

12. Laubenbacher, R.: Algebraic Models in Systems Biology. In: Anai, H., Horimoto, K.
(eds.) Algebraic Biology 2005, pp. 33–35. Universal Academy Press, Tokyo (2005)

13. Motameny, S., Versmold, B., Schmutzler, R.: Formal Concept Analysis for the Iden-
tification of Combinatorial Biomarkers in Breast Cancer. In: Medina, R., Obiedkov,
S.A. (eds.) ICFCA 2008. LNCS, vol. 4933, pp. 229–240. Springer, Heidelberg (2008)

14. Peirce, C.S.: How to Make Our Ideas Clear. In: Hartshorne, C., Weiss, P. (eds.)
Collected papers. Harvard University Press, Cambridge/Mass (1931-1935)

15. Ganter, B., Rudolph, S.: Formal Concept Analysis Methods for Dynamic Concep-
tual Graphs. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI),
vol. 2120, pp. 143–156. Springer, Heidelberg (2001)

16. Steggles, L.J., et al.: Qualitatively modelling and analysing genetic regulatory net-
works: a Petri net approach. Bioinformatics 23(3), 336–343 (2007)

17. Tomas, C.A., et al.: DNA array-based transcriptional analysis of asporogenous,
nonsolventogenic Clostridium acetobutylicum strains SKO1 and M5. J. Bacte-
riol. 15, 4539–4547 (2003)

18. Wollbold, J.: Attribute Exploration of Discrete Temporal Transitions. In: Gély, A.,
et al. (eds.) ICFCA 2007, Clermont-Ferrand, pp. 121–130 (2007)

19. Wollbold, J., Huber, R., Wolff, K.E.: Conceptual Representation of Gene Expres-
sion Processes. In: Knowledge Processing in Practice 2007. LNCS (LNAI). Springer,
Heidelberg (to appear, 2008)

20. Zickwolff, M.: Rule Exploration: First Order Logic in Formal Concept Analysis.
PhD thesis. University of Technology, Darmstadt (1991)

Author Index

Aiguier, Marc 125
Akutsu, Tatsuya 1, 216

Biere, Armin 16
Bortolussi, Luca 40
Boulier, François 22, 56

Cardelli, Luca 65
Comet, Jean-Paul 125

Eickmeyer, Kord 81
Engeler, Erwin 96

Ganter, Bernhard 230
Guthke, Reinhard 230

Hayashida, Morihiro 1

Ironi, Liliana 110

Le Gall, Pascale 125
Lefranc, Marc 56
Lemaire, François 22, 56

Mabrouki, Mbarka 125
McCaig, Chris 139
Morant, Pierre-Emmanuel 56

Niu, Wei 156
Norman, Rachel 139

Panzeri, Luigi 110
Plahte, Erik 110
Policriti, Alberto 40

Shankland, Carron 139
Shiu, Anne 172
Siebert, Heike 185
Sturm, Thomas 200

Tamura, Takeyuki 1, 216

Wang, Dongming 156
Weber, Andreas 200
Wollbold, Johannes 230

Yoshida, Ruriko 81

Zavattaro, Gianluigi 65

	Title Page
	Preface
	Conference Organization
	Table of Contents
	Algorithms for Inference, Analysis and Control of Boolean Networks
	Introduction
	BooleanNetwork
	Inference of Boolean Networks
	Problem Definition and Simple Inference Algorithm
	Upper and Lower Bounds on Sample Complexity
	Computational Complexity Issue

	Identification of Attractors
	Attractors in Boolean Networks
	Simple Recursive Algorithm and Its Average Case Analysis
	Issues on the Worst Case Time Complexity

	Control of Boolean Networks
	Definition of the Control Problem
	Dynamic Programming Algorithms for Control of BNs
	NP-Hardness Results on Control of BNs

	Concluding Remarks
	References

	Differential Algebra and System Modeling in Cellular Biology
	Introduction
	Differential Elimination
	Example
	Differential Algebra

	Quasi-Steady State Approximation for Generalized Chemical Reactions Systems
	QSSA in General: Fast and Slow Variables
	QSSA for Chemical Reactions Systems: Fast and Slow Reactions
	Construction of the DAE to Consider for the QSSA
	Limits and Generalizations of the Method

	Application to System Modeling in Cellular Biology
	Parameters Estimation
	Conclusion
	References

	Hybrid Semantics for Stochastic π-Calculus
	Introduction
	Stochastic π-Calculus
	HybridAutomata
	Control Automata
	Fromπ-Calculus to Hybrid Automata
	Conclusions
	References

	Applying a Rigorous Quasi-Steady State Approximation Method for Proving the Absence of Oscillations in Models of Genetic Circuits
	Introduction
	Our Family of Models
	The Initial Model
	The New Quasi-Steady State Approximation
	Parameters Reduction

	On the Existence of Poincar´e-Andronov-Hopf Bifurcations
	On the New Quasi-Steady State Approximation
	Principle of the Method
	A Better New Reduced Model

	Conclusion
	References

	On the Computational Power of Biochemistry
	Introduction
	Chemical Ground Form
	Biochemical Ground Form
	Turing Completeness of BGF
	Conclusion
	References

	The Geometry of the Neighbor-Joining Algorithm for Small Trees
	Introduction
	The Neighbor-Joining Algorithm
	Input Data
	The Q-Criterion
	The Shifting Lemma
	The First Step in Cherry Picking
	The Cone $\it{cd_{i}}$

	The NJ Cones for Five Taxa
	Permuting Leaf Labels
	The Cone C_{43,2}

	The Six Taxa Case
	Simulation Results
	OpenProblems
	References

	Neural Algebra and Consciousness: A Theory of Structural Functionality in Neural Nets
	Introduction
	Neural Algebra
	Some Mathematical Background
	In Search of Consciousness
	The Structural Basis of Consciousness
	The Emergence of Consciousness

	Discussion
	On Laws of Thought
	Extended and Collective Consciousness

	References

	An Algorithm for Qualitative Simulation of Gene Regulatory Networks with Steep Sigmoidal Response Functions
	Introduction
	A Modeling Framework for the Study of GRN Dynamics
	Qualitative Simulation of GRN Models
	The Simulation Algorithm
	Calculation of the Qualitative State
	Remarks about Symbolic Computations

	An Example of the Algorithm atWork
	Discussion and Future Work
	References

	Property Preservation along Embedding of Biological Regulatory Networks
	Introduction
	Preliminaries
	BRN Logic
	Syntax
	Semantics

	Property Preservation along Signature Embeddings
	Counter-Example Justifying Our Restrictive Notion of Signature Embeddings
	Conclusion
	References

	Process Algebra Models of Population Dynamics
	Introduction
	Background
	WSCCS Syntax and Semantics
	Deriving Mean Field Equations from WSCCS Models

	Density Dependent Growth
	Functional Probabilities
	Food as an Explicit Resource

	Population Dynamics and Disease
	Conclusion
	References

	Algebraic Analysis of Bifurcation and Limit Cycles for Biological Systems
	Introduction
	Bifurcation Analysis for Two-Dimensional Systems
	Bifurcation and Limit Cycles for Self-assembling Micelle Systems with Chemical Sinks
	Bifurcation Analysis
	Construction of Limit Cycles
	Conditions for the Existence of Foci

	Bifurcation and Limit Cycles for Kolmogorov Prey-Predator and Lotka–Volterra Systems
	Cubic Kolmogorov Prey-Predator System
	Bifurcation and Limit Cycles for High-Dimensional Systems
	Competitive Three-Dimensional Lotka–Volterra System

	Concluding Remarks
	References

	The Smallest Multistationary Mass-Preserving Chemical Reaction Network
	Introduction
	Chemical Reaction Network Theory
	The Smallest Multistationary Network
	Parametrizing Multistationarity
	Subnetworks of the Square
	References

	Local Structure and Behavior of Boolean Bioregulatory Networks
	Introduction
	Regulatory Networks
	Boolean Functions and Local Interaction Graphs
	Singular States
	Attractors and Local Interaction Graphs of Singular Steady States
	Conclusion
	References

	Investigating Generic Methods to Solve Hopf Bifurcation Problems in Algebraic Biology
	Introduction
	Quantifier Elimination over the Reals
	A Survey of Regular Quantifier Elimination
	Positive Quantifier Elimination

	Computation Examples
	Models of Genetic Circuits
	Mass Action Systems

	Conclusions and Future Work
	References

	An Improved Algorithm for Detecting a Singleton Attractor in a Boolean Network Consisting of AND/OR Nodes
	Introduction
	Preliminaries
	O(1.774^{n}) Time Algorithm
	ImprovedAnalysis
	Conclusion and Future Works
	References

	Constructing a Knowledge Base for Gene Regulatory Dynamics by Formal Concept Analysis Methods
	Introduction
	Methods
	Fundamental Structures of Formal Concept Analysis
	Constructing the Knowledge Base – Summary of the Method
	Definition of the Relevant Formal Contexts
	Dependency of Contexts and Background Knowledge

	Results: Sporulation in $\it{Bacillus subtilis}$
	Analysis of All Possible Transitions
	Simulation Starting from a State Typical for the Vegetative Growth Phase

	Discussion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

